Accès gratuit
Numéro
Matériaux & Techniques
Volume 105, Numéro 3, 2017
Numéro d'article 303
Nombre de pages 23
Section Mise en œuvre des matériaux / Materials processing
DOI https://doi.org/10.1051/mattech/2017034
Publié en ligne 6 décembre 2017
  1. « Publication du Panorama 2015 : découvrez les indicateurs économiques de référence de la plasturgie et des composites − Fédération Plasturgie et Composites. Fédération de la plasturgie et des composites [Google Scholar]
  2. S.G. Harris, E.D. Doyle, Y.-C. Wong, P.R. Munroe, J.M. Cairney, J.M. Long, Reducing the macroparticle content of cathodic arc evaporated TiN coatings, Surf. Coat. Technol. 183(2–3), 283 (2004) [CrossRef] [Google Scholar]
  3. B. Bhushan, H. Fuchs, M. Tomitori, Applied scanning probe methods X: biomimetics and industrial applications, Springer-Verlag, Berlin Heidelberg, Vol. 9, 2008 [Google Scholar]
  4. V. Belaud, S. Valette, G. Stremsdoerfer, M. Bigerelle, S. Benayoun, Wettability versus roughness: Multi-scales approach, Tribol. Int. 82B, 343 (2015) [CrossRef] [Google Scholar]
  5. M. Nosonovsky, B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, Springer Science & Business Media, 2008 [CrossRef] [Google Scholar]
  6. B. Bhushan, K. Koch, Y.C. Jung, Fabrication and characterization of the hierarchical structure for superhydrophobicity and self-cleaning, Ultramicroscopy 109(8), 1029 (2009) [CrossRef] [Google Scholar]
  7. D. Kontziampasis, G. Boulousis, A. Smyrnakis, K. Ellinas, A. Tserepi, E. Gogolides, Biomimetic, antireflective, superhydrophobic and oleophobic PMMA and PMMA-coated glass surfaces fabricated by plasma processing, Microelectron. Eng. 121, 33 (2014) [CrossRef] [Google Scholar]
  8. Y. Li, et al., Biomimetic Surfaces for High-Performance Optics, Adv. Mater. 21(46), 4731 (2009) [Google Scholar]
  9. P. Comanns, C. Effertz, F. Hischen, K. Staudt, W. Böhme, W. Baumgartner, Moisture harvesting and water transport through specialized micro-structures on the integument of lizards, Beilstein J. Nanotechnol. 2(1), 204 (2011) [CrossRef] [Google Scholar]
  10. S. Niu, et al., Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review, J. Bionic Eng. 12(2), 170 (2015) [CrossRef] [Google Scholar]
  11. B.R. Whiteside, M.T. Martyn, P.D. Coates, P.S. Allan, P.R. Hornsby, G. Greenway, Micromoulding: process characteristics and product properties, Plast. Rubber Compos. 32(6), 231 (2003) [CrossRef] [Google Scholar]
  12. T. Messin, et al., Confinement effect in PC/MXD6 multilayer films: Impact of the microlayered structure on water and gas barrier properties, J. Membr. Sci. 525, 135 (2017) [CrossRef] [Google Scholar]
  13. A. Bironeau, J. Dirrenberger, C. Sollogoub, G. Miquelard-Garnier, S. Roland, Evaluation of morphological representative sample sizes for nanolayered polymer blends, J. Microsc. 264(1), 48 (2016) [CrossRef] [Google Scholar]
  14. R. Bartolini, W. Hannan, D. Karlsons, M. Lurie, HOLOGRAPHY Embossed Hologram Motion Pictures for Television Playback, Appl. Opt. 9(10), 2283 (1970) [CrossRef] [Google Scholar]
  15. M.T. Gale, J. Kane, K. Knop, ZOD Images-Embossable Surface-Relief Structures for Color and Black-and-White Reproduction, J. Appl. Photogr. Eng. 4(2), 41 (1978) [Google Scholar]
  16. E.W. Backer, et al., Production of separation-nozzle systems for uranium enrichment by a combination of X-ray lithography and galvanoplastics, Naturwissenschaften 69(11), 520 (1982) [CrossRef] [Google Scholar]
  17. H. Vollmer, W. Ehrfeld, P. Hagmann, Fabrication of microstructures with extreme structural heights by vacuum reaction injection molding and electroforming, NASA STIRecon Tech. Rep. N 88, (1987) [Google Scholar]
  18. M. Harmening, et al., Molding of three dimensional microstructures by the LIGA process, in: Proceedings IEEE Micro Electro Mechanical Systems, 1992, pp. 202–207 [Google Scholar]
  19. N. Okulova, P. Johansen, L. Christensen, R. Taboryski, Replication of micro-sized pillars in polypropylene using the extrusion coating process, Microelectron. Eng. 176, 54 (2017) [CrossRef] [Google Scholar]
  20. M. Röhrig, et al., Hot pulling and embossing of hierarchical nano- and micro-structures, J. Micromechanics Microengineering 23(10), 105014 (2013) [CrossRef] [Google Scholar]
  21. M. Cecchini, F. Signori, P. Pingue, S. Bronco, F. Ciardelli, F. Beltram, High-Resolution Poly(ethylene terephthalate) (PET) Hot Embossing at Low Temperature: Thermal, Mechanical, and Optical Analysis of Nanopatterned Films, Langmuir 24(21), 12581 (2008) [CrossRef] [Google Scholar]
  22. J.V. Erps, et al., Hot Embossing of Microoptical Components Prototyped by Deep Proton Writing, IEEE Photonics Technol. Lett. 20(18), 1539 (2008) [CrossRef] [Google Scholar]
  23. M. Heckele, W.K. Schomburg, Review on micro molding of thermoplastic polymers, J. Micromechanics Microengineering 14(3), R1 (2004) [CrossRef] [Google Scholar]
  24. Aide-mémoire − Transformation des matières plastiques, 2017 [Google Scholar]
  25. Plastic Injection Molding Industry Expected to Grow by Almost 5% Annually Through 2020, Magenta LLC, 2016 [Google Scholar]
  26. L'Injection des matières, Plastique Industries [Google Scholar]
  27. Z. Tadmor, Molecular orientation in injection molding, J. Appl. Polym. Sci. 18(6), 1753 (1974) [CrossRef] [Google Scholar]
  28. R. Mendoza, Morphologies induites dans les pièces en polyolefine moulées par injection, PhD thesis, Paris, ENSAM, 2005 [Google Scholar]
  29. M. Vite, Relations entre microstructure, propriétés mécaniques et résistance à la rayure du polypropylène injecté, PhD thesis, université Savoie Mont Blanc, France, 2009 [Google Scholar]
  30. J. Giboz, T. Copponnex, P. Mélé, Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding, J. Micromechanics Microengineering 19(2), 025023 (2009) [CrossRef] [Google Scholar]
  31. E.E. Ferg, L.L. Bolo, A correlation between the variable melt flow index and the molecular mass distribution of virgin and recycled polypropylene used in the manufacturing of battery cases, Polym. Test. 32(8), 1452 (2013) [CrossRef] [Google Scholar]
  32. H.-G. Elias, R. Bareiss, J.G. Watterson, Mittelwerte des Molekulargewichtes und anderer Eigenschaften, in Fortschritte der Hochpolymeren-Forschung, Springer, Berlin Heidelberg, 1973, pp. 111–204 [Google Scholar]
  33. M.M. Cross, Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems, J. Colloid Sci. 20(5), 417 (1965) [CrossRef] [Google Scholar]
  34. P.J. Carreau, Rheological equations from molecular network theories, Trans. Soc. Rheol. 16(1), 99 (1972) [CrossRef] [Google Scholar]
  35. K. Yasuda, R.C. Armstrong, R.E. Cohen, Shear flow properties of concentrated solutions of linear and star branched polystyrenes, Rheol. Acta 20(2), 163 (1981) [CrossRef] [Google Scholar]
  36. C.A. Hieber, H.H. Chiang, Some correlations involving the shear viscosity of polystyrene melts, Rheol. Acta 28(4), 321 (1989) [CrossRef] [Google Scholar]
  37. T. Bremner, A. Rudin, D.G. Cook, Melt flow index values and molecular weight distributions of commercial thermoplastics, J. Appl. Polym. Sci. 41(7–8), 1617 (1990) [CrossRef] [Google Scholar]
  38. J. Vera, A.-C. Brulez, E. Contraires, M. Larochette, S. Valette, S. Benayoun, Influence of the polypropylene structure on the replication of nanostructures by injection molding, J. Micromechanics Microengineering 25(11), 115027 (2015) [CrossRef] [Google Scholar]
  39. R. Nakhoul, P. Laure, L. Silva, M. Vincent, A multiphase Eulerian approach for modelling the polymer injection into a textured mould, Int. J. Mater. Form., 1 (2016) [Google Scholar]
  40. R.-D. Chien, W.-R. Jong, S.-C. Chen, Study on rheological behavior of polymer melt flowing through micro-channels considering the wall-slip effect, J. Micromechanics Microengineering 15(8), 1389 (2005) [CrossRef] [Google Scholar]
  41. A. Lamure, Mise en oeuvre des polymères. Disponible sur : http://www.inp-toulouse.fr/_resources/documents/TICE/Mat%25C3%25A9riaux%2520et%2520polym%25C3%25A8res/02Extrait_Mise_en_oeuvre_des_polymeres.pdf?download=true [Consulté le : 2017/18/04] [Google Scholar]
  42. M.S. Despa, K.W. Kelly, J.R. Collier, Injection molding of polymeric LIGA HARMs, Microsyst. Technol. 6(2), 60 (1999) [CrossRef] [Google Scholar]
  43. S.-C. Tseng, Y.-C. Chen, C.-L. Kuo, B.-Y. Shew, A study of integration of LIGA and M-EDM technology on the microinjection molding of ink-jet printers' nozzle plates, Microsyst. Technol. 12(1–2), 116 (2005) [CrossRef] [Google Scholar]
  44. S. Yuan, N.P. Hung, B.K.A. Ngoi, M.Y. Ali, Development of Microreplication Process-Micromolding, Mater. Manuf. Process. 18(5), 731 (2003) [CrossRef] [Google Scholar]
  45. M. Debowski, J. Zhao, A. Spowage, P. Glendenning, Development of techniques and methodologies for micro-and sub-micro evaluation of moulded polymer systems, Citeseer, (2003) [Google Scholar]
  46. C.K. Huang, S.W. Chen, C.T. Yang, Accuracy and mechanical properties of multiparts produced in one mold in microinjection molding, Polym. Eng. Sci. 45(11), 1471 (2005) [CrossRef] [Google Scholar]
  47. H. Ito, H. Suzuki, K. Kazama, T. Kikutani, Polymer structure and properties in micro- and nanomolding process, Curr. Appl. Phys. 9(2), e19 (2009) [CrossRef] [Google Scholar]
  48. X. Lu, L.S. Khim, A statistical experimental study of the injection molding of optical lenses, J. Mater. Process. Technol. 113(1–3), 189 (2001) [CrossRef] [Google Scholar]
  49. Y.-C. Su, J. Shah, L. Lin, Implementation and analysis of polymeric microstructure replication by micro injection molding, J. Micromechanics Microengineering 14(3), 415 (2004) [CrossRef] [Google Scholar]
  50. A.W. McFarland, M.A. Poggi, L.A. Bottomley, J.S. Colton, Injection-moulded scanning force microscopy probes, Nanotechnology 16(8), 1249 (2005) [CrossRef] [Google Scholar]
  51. A.W. McFarland, M.A. Poggi, L.A. Bottomley, J.S. Colton, Injection moulding of high aspect ratio micron-scale thickness polymeric microcantilevers, Nanotechnology 15(1), 1628 (2004) [CrossRef] [Google Scholar]
  52. H. Ito, Y. Yagisawa, T. Saito, T. Yasuhara, T. Kikutani, Y. Yamagiwa, Fundamental Study on Structure Development of Thin-Wall Injection Molded Products, Theor. Appl. Mech. Jpn. 54, 263 (2005) [Google Scholar]
  53. N.B. Malhab, Moulage par microinjection des polymères semi-cristallins, PhD thesis, École nationale supérieure d'arts et métiers − ENSAM, 2012 [Google Scholar]
  54. G. Mougin, Principaux modes de dégradation des outillages en plasturgie, in Bulletin du cercle d'Études des Métaux, Pôle européen de plasturgie, Oyonnax, Vol. Tome XVII, 2015 [Google Scholar]
  55. R. Lévèque, Aciers à outils, évolution des nuances et de leurs traitements de surface, in Bulletin du cercle d'Études des Métaux, École des mines d'Albi, Vol. Tome XVIII, 2015 [Google Scholar]
  56. P. Jacquot, P. Foraison, Traitements appliqués aux outillages et moules d'injection plastique, in Bulletin du cercle d'Études des Métaux, Pôle européen de plasturgie, Oyonnax, Vol. Tome XVII, 2003 [Google Scholar]
  57. B. Saha, W.Q. Toh, E. Liu, S.B. Tor, D.E. Hardt, J. Lee, A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes, J. Micromechanics Microengineering 26(1), 013002 (2016) [CrossRef] [Google Scholar]
  58. C.A. Griffiths, et al., A novel texturing of micro injection moulding tools by applying an amorphous hydrogenated carbon coating, Surf. Coat. Technol. 235, 1 (2013) [CrossRef] [Google Scholar]
  59. C. Donnet, A. Erdemir, Tribology of Diamond-like Carbon Films: Fundamentals and Applications, Springer Science & Business Media, Berlin Heidelberg, 2007 [Google Scholar]
  60. M. Chailly, Influence des traitements de surface de moule dans le procédé d'injection-moulage : application aux défauts d'aspect, PhD thesis, Villeurbanne, INSA, 2007 [Google Scholar]
  61. K. Reichelt, X. Jiang, The preparation of thin films by physical vapour deposition methods, Thin Solid Films 191(1), 91 (1990) [CrossRef] [Google Scholar]
  62. S.M. Rossnagel, Thin film deposition with physical vapor deposition and related technologies, J. Vac. Sci. Technol. Vac. Surf. Films 21(5), S74 (2003) [CrossRef] [Google Scholar]
  63. J.E. Mahan, Physical Vapor Deposition of Thin Films, John Wiley & Sons Inc, 2000, ISBN: 978-0-471-33001-1 [Google Scholar]
  64. T. Prieur, Sélection d'un précurseur pourl'élaboration de couchesatomiques de cuivre : application à l'intégration 3D − Recherche Google, PhD thesis, université de Grenoble, 2012 [Google Scholar]
  65. V.F. Neto, R. Vaz, M.S.A. Oliveira, J. Grácio, CVD diamond-coated steel inserts for thermoplastic mould tools-Characterization and preliminary performance evaluation, J. Mater. Process. Technol. 209(2), 1085 (2009) [CrossRef] [Google Scholar]
  66. P. Loan, H. Prestavoine, Innovations BALINIT pour les outillages de frappe et d'injection, in Bulletin du cercle d'Études des Métaux, École des mines d'Albi, Vol. Tome XVIII, 2015 [Google Scholar]
  67. L. Cunha, et al., Performance of chromium nitride and titanium nitride coatings during plastic injection moulding, Surf. Coat. Technol. 153(2–3), 160 (2002) [CrossRef] [Google Scholar]
  68. L. Cunha, et al., Performance of chromium nitride based coatings under plastic processing conditions, Surf. Coat. Technol. 133–134, 61 (2000) [CrossRef] [Google Scholar]
  69. V. Miikkulainen, et al., Thin films of MoN, WN, and perfluorinated silane deposited from dimethylamido precursors as contamination resistant coatings on micro-injection mold inserts, Surf. Coat. Technol. 202(21), 5103 (2008) [CrossRef] [Google Scholar]
  70. S.J. Bull, R.I. Davidson, E.H. Fisher, A.R. McCabe, A.M. Jones, A simulation test for the selection of coatings and surface treatments for plastics injection moulding machines, Surf. Coat. Technol. 130(2–3), 257 (2000) [CrossRef] [Google Scholar]
  71. S.-H. Yoon, et al., Effect of processing parameters, antistiction coatings, and polymer type when injection molding microfeatures, Polym. Eng. Sci. 50(2), 411 (2010) [CrossRef] [Google Scholar]
  72. M. Matschuk, N.B. Larsen, Injection molding of high aspect ratio sub-100 nm nanostructures, J. Micromechanics Microengineering 23(2), 025003 (2013) [CrossRef] [Google Scholar]
  73. C.A. Griffiths, S.S. Dimov, E.B. Brousseau, C. Chouquet, J. Gavillet, S. Bigot, Investigation of surface treatment effects in micro-injection-moulding, Int. J. Adv. Manuf. Technol. 47(1–4), 99 (2010) [CrossRef] [Google Scholar]
  74. T.C. Hobæk, M. Matschuk, J. Kafka, H.J. Pranov, N.B. Larsen, Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding, J. Micromechanics Microengineering 25(3), 035018 (2015) [CrossRef] [Google Scholar]
  75. M. Van Stappen, K. Vandierendonck, C. Mol, E. Beeckman, E. De Clercq, Practice vs. laboratory tests for plastic injection moulding, Surf. Coat. Technol. 142–144, 143 (2001) [CrossRef] [Google Scholar]
  76. J.-Y. Charmeau, M. Chailly, V. Gilbert, Y. Béreaux, Influence of mold surface coatings in injection molding. Application to the ejection stage, Int. J. Mater. Form. 1(1), 699 (2008) [CrossRef] [Google Scholar]
  77. P. Jones, Mould design guide, 2015 [Google Scholar]
  78. J.-Y. Chen, S.-J. Hwang, Design and fabrication of an adhesion force tester for the injection moulding process, Polym. Test. 32(1), 22 (2013) [CrossRef] [Google Scholar]
  79. X. Zhang, B. Sun, N. Zhao, Q. Li, J. Hou, W. Feng, Experimental study on the surface characteristics of Pd-based bulk metallic glass, Appl. Surf. Sci. 321, 420 (2014) [CrossRef] [Google Scholar]
  80. N. Bagcivan, K. Bobzin, T. Brögelmann, C. Kalscheuer, Development of (Cr, Al)ON coatings using middle frequency magnetron sputtering and investigations on tribological behavior against polymers, Surf. Coat. Technol. 260, 347 (2014) [Google Scholar]
  81. G. Zitzenbacher, Z. Huang, M. Längauer, C. Forsich, C. Holzer, Wetting behavior of polymer melts on coated and uncoated tool steel surfaces, J. Appl. Polym. Sci. 133(21), (2016) [CrossRef] [Google Scholar]
  82. C. Rytka, N. Opara, N.K. Andersen, P.M. Kristiansen, A. Neyer, On The Role of Wetting, Structure Width, and Flow Characteristics in Polymer Replication on Micro- and Nanoscale, Macromol. Mater. Eng. 301, 597 (2016) [Google Scholar]
  83. J.M. Stormonth-Darling, R.H. Pedersen, C. How, N. Gadegaard, Injection moulding of ultra high aspect ratio nanostructures using coated polymer tooling, J. Micromechanics Microengineering 24 (7), 075019 (2014) [CrossRef] [Google Scholar]
  84. P. Roy, Microplasturgie, Techn. Ingenieur, AM3701 (2001) [Google Scholar]
  85. J. Giboz, T. Copponnex, P. Mélé, Microinjection molding of thermoplastic polymers: a review, J. Micromechanics Microengineering 17(6), R96 (2007) [CrossRef] [Google Scholar]
  86. U.M. Attia, J.R. Alcock, A review of micro-powder injection moulding as a microfabrication technique, J. Micromechanics Microengineering 21(4), 043001 (2011) [CrossRef] [Google Scholar]
  87. Y. Xia, G.M. Whitesides, Soft Lithography, Angew. Chem. In t. Ed. 37(5), 550 (1998) [CrossRef] [Google Scholar]
  88. J.P. Rolland, E.C. Hagberg, G.M. Denison, K.R. Carter, J.M. De Simone, High-Resolution Soft Lithography: Enabling Materials for Nanotechnologies, Angew. Chem. 116(43), 5920 (2004) [CrossRef] [Google Scholar]
  89. A.K. Dubey, V. Yadava, Laser beam machining-A review, Int. J. Mach. Tools Manuf. 48(6), 609 (2008) [CrossRef] [Google Scholar]
  90. H.E. Jeong, M.K. Kwak, C.I. Park, K.Y. Suh, Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography, J. Colloid Interface Sci. 339(1), 202 (2009) [CrossRef] [Google Scholar]
  91. S.-M. Lee, T.H. Kwon, Mass-producible replication of highly hydrophobic surfaces from plant leaves, Nanotechnology 17(13), 3189 (2006) [CrossRef] [Google Scholar]
  92. R.A. Singh, E.-S. Yoon, H.J. Kim, J. Kim, H.E. Jeong, K.Y. Suh, Replication of surfaces of natural leaves for enhanced micro-scale tribological property, Mater. Sci. Eng. C 27(4), 875 (2007) [CrossRef] [Google Scholar]
  93. Y. Xue, Voie innovante pour la nano micro texturation de surfaces métalliques à base d'assemblage de nanoparticules d'Au : application superhydrophobe, PhD thesis, université Pierre et Marie Curie, Paris VI, 2014 [Google Scholar]
  94. Morphotonix, Industries. Disponible sur: http://www.morphotonix.com/industries/ [Consulté le: 2017/10/04] [Google Scholar]
  95. J. Yang, Y. Zhao, X. Zhu, Transition between nonthermal and thermal ablation of metallic targets under the strike of high-fluence ultrashort laser pulses, Appl. Phys. Lett. 88(9), 094101 (2006) [CrossRef] [Google Scholar]
  96. B.N. Chichkov, C. Momma, S. Nolte, A. Von, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. Mater. Sci. Process. 63(2), 109 (1996) [CrossRef] [Google Scholar]
  97. N.M. Bulgakova, I.M. Bourakov, Phase explosion under ultrashort pulsed laser ablation: Modeling with analysis of metastable state of melt, Appl. Surf. Sci. 197–198, 41 (2002) [CrossRef] [Google Scholar]
  98. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, D.L. Von, Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy, J. Appl. Phys. 85(6), 3301 (1999) [CrossRef] [Google Scholar]
  99. W.G. Roeterdink, L.B.F. Juurlink, O.P.H. Vaughan, D. Dura, M. Bonn, A.W. Kleyn, Coulomb explosion in femtosecond laser ablation of Si(111), Appl. Phys. Lett. 82(23), 4190 (2003) [CrossRef] [Google Scholar]
  100. R. Stoian, D. Ashkenasi, A. Rosenfeld, E.E.B. Campbell, Coulomb explosion in ultrashort pulsed laser ablation of Al2O3, Phys. Rev. B − Condens. Matter Mater. Phys. 62(19), 13167 (2000) [CrossRef] [Google Scholar]
  101. J. Houzet, N. Faure, M. Larochette, A.-C. Brulez, S. Benayoun, C. Mauclair, Ultrafast laser spatial beam shaping based on Zernike polynomials for surface processing, Opt. Express 24(6), 6542 (2016) [CrossRef] [Google Scholar]
  102. É. Audouard, Lasers à impulsions ultrabrèves : applications, Tech. Ing. TIB452DUO, e6455 (2011) [Google Scholar]
  103. N. Stutzmann, T.A. Tervoort, C.W.M. Bastiaansen, K. Feldman, P. Smith, Solid-State Replication of Relief Structures in Semicrystalline Polymers, Adv. Mater. 12(8), 557 (2000) [CrossRef] [Google Scholar]
  104. T. Ibatan, M.S. Uddin, M.A.K. Chowdhury, Recent development on surface texturing in enhancing tribological performance of bearing sliders, Surf. Coat. Technol. 272, 102 (2015) [CrossRef] [Google Scholar]
  105. S. Hammouti, Micro-texturation de surface du PEEK par laser femtoseconde : étude locale de l'interaction laser-polymère et apport de la texturation de surface aux propriétés tribologiques d'un contact PEEK/PEEK, PhD thesis, École centrale de Lyon, Écully, 2015 [Google Scholar]
  106. P. Bizi Bandoki, Structuration multi-échelle d'alliages métalliques au moyen d'un laser Femtoseconde, Écully, École centrale de Lyon, 2012 [Google Scholar]
  107. J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Femtosecond laser ablation of silicon-modification thresholds and morphology, Appl. Phys. Mater. Sci. Process. 74(1), 19 (2002) [CrossRef] [Google Scholar]
  108. T.-H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Microstructuring of silicon with femtosecond laser pulses, Appl. Phys. Lett. 73(12), 1673 (1998) [CrossRef] [Google Scholar]
  109. P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, E. Audouard, Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment, Appl. Surf. Sci. 257(12), 5213 (2011) [CrossRef] [Google Scholar]
  110. M. Birnbaum, Semiconductor Surface Damage Produced by Ruby Lasers, J. Appl. Phys. 36(11), 3688 (1965) [CrossRef] [Google Scholar]
  111. P.M. Fauchet, A.E. Siegman, Surface ripples on silicon and gallium arsenide under picosecond laser illumination, Appl. Phys. Lett. 40(9), 824 (1982) [CrossRef] [Google Scholar]
  112. L. Qi, F. Li, H. Lin, J. Hu, On the formation of regular sub-wavelength ripples by femtosecond laser pulses on silicon, Opt. − Int. J. Light Electron Opt. 126(24), 4905 (2015) [CrossRef] [Google Scholar]
  113. J.F. Young, J.S. Preston, D. Van, J.E. Sipe, Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass, Phys. Rev. B 27(2), 1155 (1983) [CrossRef] [Google Scholar]
  114. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Laser-induced periodic surface structure. I. Theory, Phys. Rev. B 27(2), 1141 (1983) [CrossRef] [Google Scholar]
  115. J. Reif, et al., On large area LIPSS coverage by multiple pulses, Appl. Surf. Sci. 336, 249 (2015) [CrossRef] [Google Scholar]
  116. K.M.B. Jansen, D.J. Van Dijk, M.H. Husselman, Effect of processing conditions on shrinkage in injection molding, Polym. Eng. Sci. 38(5), 838 (1998) [CrossRef] [Google Scholar]
  117. K.M.B. Jansen, R. Pantani, G. Titomanlio, As-molded shrinkage measurements on polystyrene injection molded products, Polym. Eng. Sci. 38(2), 254 (1998) [CrossRef] [Google Scholar]
  118. H.-Y. Lin, W.-B. Young, Analysis of the filling capability to the microstructures in micro-injection molding, Appl. Math. Model. 33(9), 3746 (2009) [CrossRef] [Google Scholar]
  119. N. Zhang, J.S. Chu, C.J. Byrne, D.J. Browne, M.D. Gilchrist, Replication of micro/nano-scale features by micro injection molding with a bulk metallic glass mold insert, J. Micromechanics Microengineering 22(6), 065019 (2012) [CrossRef] [Google Scholar]
  120. K. Mönkkönen, et al., Replication of sub-micron features using amorphous thermoplastics, Polym. Eng. Sci. 42(7), 1600 (2002) [CrossRef] [Google Scholar]
  121. V. Kalima, et al., Transparent thermoplastics: Replication of diffractive optical elements using micro-injection molding, Opt. Mater. 30(2), 285 (2007) [CrossRef] [Google Scholar]
  122. J. Zhao, R.H. Mayes, G. Chen, H. Xie, P.S. Chan, Effects of process parameters on the micro molding process, Polym. Eng. Sci. 43(9), 1542 (2003) [CrossRef] [Google Scholar]
  123. B. Sha, S. Dimov, C. Griffiths, M.S. Packianather, Investigation of micro-injection moulding: Factors affecting the replication quality, J. Mater. Process. Technol. 183(2–3), 284 (2007) [CrossRef] [Google Scholar]
  124. I. Ariño, U. Kleist, G.G. Barros, P.-A. Johansson, M. Rigdahl, Surface texture characterization of injection-molded pigmented plastics, Polym. Eng. Sci. 44(9), 1615 (2004) [CrossRef] [Google Scholar]
  125. E. Huovinen, L. Takkunen, M. Suvanto, T.A. Pakkanen, Fabrication and quantitative roughness analysis of hierarchical multiscale polymer surface structures, J. Micromechanics Microengineering 24(5), 055017 (2014) [CrossRef] [Google Scholar]
  126. C. Rytka, P.M. Kristiansen, A. Neyer, Iso- and variothermal injection compression moulding of polymer micro- and nanostructures for optical and medical applications, J. Micromechanics Microengineering 25(6), 065008 (2015) [CrossRef] [Google Scholar]
  127. V. Bellantone, R. Surace, G. Trotta, I. Fassi, Replication capability of micro injection moulding process for polymeric parts manufacturing, Int. J. Adv. Manuf. Technol. 67(5–8), 1407 (2013) [CrossRef] [Google Scholar]
  128. M. Matschuk, H. Bruus, N.B. Larsen, Nanostructures for all-polymer microfluidic systems, Microelectron. Eng. 87(5–8), 1379 (2010) [CrossRef] [Google Scholar]
  129. J. Chu, M.R. Kamal, S. Derdouri, A. Hrymak, Characterization of the microinjection molding process, Polym. Eng. Sci. 50(6), 1214 (2010) [CrossRef] [Google Scholar]
  130. V. Miikkulainen, T. Rasilainen, E. Puukilainen, M. Suvanto, T.A. Pakkanen, Atomic Layer Deposition as Pore Diameter Adjustment Tool for Nanoporous Aluminum Oxide Injection Molding Masks, Langmuir 24(9), 4473 (2008) [CrossRef] [Google Scholar]
  131. J.M. Dealy, Rheometers for molten plastics: a practical guide to testing and property measurement, Van Nostrand Reinhold Company, Springer-Verlag, Berlin Heidelberg, 1982 ISBN-13: 978-0442218744 [Google Scholar]
  132. R. Ballman, T. Shusman, Easy way to calculate injection molding set-up time, Mod. Plast. 126, 130 (1959) [Google Scholar]
  133. G.R. Berger, D.P. Gruber, W. Friesenbichler, C. Teichert, M. Burgsteiner, Replication of Stochastic and Geometric Micro Structures − Aspects of Visual Appearance, Int. Polym. Process. 26(3), 313 (2011) [CrossRef] [Google Scholar]
  134. D. Yao, S.-C. Chen, B.H. Kim, Rapid thermal cycling of injection molds: An overview on technical approaches and applications, Adv. Polym. Technol. 27(4), 233 (2008) [CrossRef] [Google Scholar]
  135. M.J. Liou, N.P. Suh, Reducing residual stresses in molded parts, Polym. Eng. Sci. 29(7), 441 (1989) [CrossRef] [Google Scholar]
  136. G. Lucchetta, E. Ferraris, G. Tristo, D. Reynaerts, Influence of mould thermal properties on the replication of micro parts via injection moulding, Procedia CIRP 2, 113 (2012) [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.