Free Access
Issue
Matériaux & Techniques
Volume 105, Number 3, 2017
Article Number 303
Number of page(s) 23
Section Mise en œuvre des matériaux / Materials processing
DOI https://doi.org/10.1051/mattech/2017034
Published online 06 December 2017
  1. « Publication du Panorama 2015 : découvrez les indicateurs économiques de référence de la plasturgie et des composites − Fédération Plasturgie et Composites. Fédération de la plasturgie et des composites [Google Scholar]
  2. S.G. Harris, E.D. Doyle, Y.-C. Wong, P.R. Munroe, J.M. Cairney, J.M. Long, Reducing the macroparticle content of cathodic arc evaporated TiN coatings, Surf. Coat. Technol. 183(2–3), 283 (2004) [CrossRef] [Google Scholar]
  3. B. Bhushan, H. Fuchs, M. Tomitori, Applied scanning probe methods X: biomimetics and industrial applications, Springer-Verlag, Berlin Heidelberg, Vol. 9, 2008 [Google Scholar]
  4. V. Belaud, S. Valette, G. Stremsdoerfer, M. Bigerelle, S. Benayoun, Wettability versus roughness: Multi-scales approach, Tribol. Int. 82B, 343 (2015) [CrossRef] [Google Scholar]
  5. M. Nosonovsky, B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, Springer Science & Business Media, 2008 [CrossRef] [Google Scholar]
  6. B. Bhushan, K. Koch, Y.C. Jung, Fabrication and characterization of the hierarchical structure for superhydrophobicity and self-cleaning, Ultramicroscopy 109(8), 1029 (2009) [CrossRef] [Google Scholar]
  7. D. Kontziampasis, G. Boulousis, A. Smyrnakis, K. Ellinas, A. Tserepi, E. Gogolides, Biomimetic, antireflective, superhydrophobic and oleophobic PMMA and PMMA-coated glass surfaces fabricated by plasma processing, Microelectron. Eng. 121, 33 (2014) [CrossRef] [Google Scholar]
  8. Y. Li, et al., Biomimetic Surfaces for High-Performance Optics, Adv. Mater. 21(46), 4731 (2009) [Google Scholar]
  9. P. Comanns, C. Effertz, F. Hischen, K. Staudt, W. Böhme, W. Baumgartner, Moisture harvesting and water transport through specialized micro-structures on the integument of lizards, Beilstein J. Nanotechnol. 2(1), 204 (2011) [CrossRef] [Google Scholar]
  10. S. Niu, et al., Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review, J. Bionic Eng. 12(2), 170 (2015) [CrossRef] [Google Scholar]
  11. B.R. Whiteside, M.T. Martyn, P.D. Coates, P.S. Allan, P.R. Hornsby, G. Greenway, Micromoulding: process characteristics and product properties, Plast. Rubber Compos. 32(6), 231 (2003) [CrossRef] [Google Scholar]
  12. T. Messin, et al., Confinement effect in PC/MXD6 multilayer films: Impact of the microlayered structure on water and gas barrier properties, J. Membr. Sci. 525, 135 (2017) [CrossRef] [Google Scholar]
  13. A. Bironeau, J. Dirrenberger, C. Sollogoub, G. Miquelard-Garnier, S. Roland, Evaluation of morphological representative sample sizes for nanolayered polymer blends, J. Microsc. 264(1), 48 (2016) [CrossRef] [Google Scholar]
  14. R. Bartolini, W. Hannan, D. Karlsons, M. Lurie, HOLOGRAPHY Embossed Hologram Motion Pictures for Television Playback, Appl. Opt. 9(10), 2283 (1970) [CrossRef] [Google Scholar]
  15. M.T. Gale, J. Kane, K. Knop, ZOD Images-Embossable Surface-Relief Structures for Color and Black-and-White Reproduction, J. Appl. Photogr. Eng. 4(2), 41 (1978) [Google Scholar]
  16. E.W. Backer, et al., Production of separation-nozzle systems for uranium enrichment by a combination of X-ray lithography and galvanoplastics, Naturwissenschaften 69(11), 520 (1982) [CrossRef] [Google Scholar]
  17. H. Vollmer, W. Ehrfeld, P. Hagmann, Fabrication of microstructures with extreme structural heights by vacuum reaction injection molding and electroforming, NASA STIRecon Tech. Rep. N 88, (1987) [Google Scholar]
  18. M. Harmening, et al., Molding of three dimensional microstructures by the LIGA process, in: Proceedings IEEE Micro Electro Mechanical Systems, 1992, pp. 202–207 [Google Scholar]
  19. N. Okulova, P. Johansen, L. Christensen, R. Taboryski, Replication of micro-sized pillars in polypropylene using the extrusion coating process, Microelectron. Eng. 176, 54 (2017) [CrossRef] [Google Scholar]
  20. M. Röhrig, et al., Hot pulling and embossing of hierarchical nano- and micro-structures, J. Micromechanics Microengineering 23(10), 105014 (2013) [CrossRef] [Google Scholar]
  21. M. Cecchini, F. Signori, P. Pingue, S. Bronco, F. Ciardelli, F. Beltram, High-Resolution Poly(ethylene terephthalate) (PET) Hot Embossing at Low Temperature: Thermal, Mechanical, and Optical Analysis of Nanopatterned Films, Langmuir 24(21), 12581 (2008) [CrossRef] [Google Scholar]
  22. J.V. Erps, et al., Hot Embossing of Microoptical Components Prototyped by Deep Proton Writing, IEEE Photonics Technol. Lett. 20(18), 1539 (2008) [CrossRef] [Google Scholar]
  23. M. Heckele, W.K. Schomburg, Review on micro molding of thermoplastic polymers, J. Micromechanics Microengineering 14(3), R1 (2004) [CrossRef] [Google Scholar]
  24. Aide-mémoire − Transformation des matières plastiques, 2017 [Google Scholar]
  25. Plastic Injection Molding Industry Expected to Grow by Almost 5% Annually Through 2020, Magenta LLC, 2016 [Google Scholar]
  26. L'Injection des matières, Plastique Industries [Google Scholar]
  27. Z. Tadmor, Molecular orientation in injection molding, J. Appl. Polym. Sci. 18(6), 1753 (1974) [CrossRef] [Google Scholar]
  28. R. Mendoza, Morphologies induites dans les pièces en polyolefine moulées par injection, PhD thesis, Paris, ENSAM, 2005 [Google Scholar]
  29. M. Vite, Relations entre microstructure, propriétés mécaniques et résistance à la rayure du polypropylène injecté, PhD thesis, université Savoie Mont Blanc, France, 2009 [Google Scholar]
  30. J. Giboz, T. Copponnex, P. Mélé, Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding, J. Micromechanics Microengineering 19(2), 025023 (2009) [CrossRef] [Google Scholar]
  31. E.E. Ferg, L.L. Bolo, A correlation between the variable melt flow index and the molecular mass distribution of virgin and recycled polypropylene used in the manufacturing of battery cases, Polym. Test. 32(8), 1452 (2013) [CrossRef] [Google Scholar]
  32. H.-G. Elias, R. Bareiss, J.G. Watterson, Mittelwerte des Molekulargewichtes und anderer Eigenschaften, in Fortschritte der Hochpolymeren-Forschung, Springer, Berlin Heidelberg, 1973, pp. 111–204 [Google Scholar]
  33. M.M. Cross, Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems, J. Colloid Sci. 20(5), 417 (1965) [CrossRef] [Google Scholar]
  34. P.J. Carreau, Rheological equations from molecular network theories, Trans. Soc. Rheol. 16(1), 99 (1972) [CrossRef] [Google Scholar]
  35. K. Yasuda, R.C. Armstrong, R.E. Cohen, Shear flow properties of concentrated solutions of linear and star branched polystyrenes, Rheol. Acta 20(2), 163 (1981) [CrossRef] [Google Scholar]
  36. C.A. Hieber, H.H. Chiang, Some correlations involving the shear viscosity of polystyrene melts, Rheol. Acta 28(4), 321 (1989) [CrossRef] [Google Scholar]
  37. T. Bremner, A. Rudin, D.G. Cook, Melt flow index values and molecular weight distributions of commercial thermoplastics, J. Appl. Polym. Sci. 41(7–8), 1617 (1990) [CrossRef] [Google Scholar]
  38. J. Vera, A.-C. Brulez, E. Contraires, M. Larochette, S. Valette, S. Benayoun, Influence of the polypropylene structure on the replication of nanostructures by injection molding, J. Micromechanics Microengineering 25(11), 115027 (2015) [CrossRef] [Google Scholar]
  39. R. Nakhoul, P. Laure, L. Silva, M. Vincent, A multiphase Eulerian approach for modelling the polymer injection into a textured mould, Int. J. Mater. Form., 1 (2016) [Google Scholar]
  40. R.-D. Chien, W.-R. Jong, S.-C. Chen, Study on rheological behavior of polymer melt flowing through micro-channels considering the wall-slip effect, J. Micromechanics Microengineering 15(8), 1389 (2005) [CrossRef] [Google Scholar]
  41. A. Lamure, Mise en oeuvre des polymères. Disponible sur : http://www.inp-toulouse.fr/_resources/documents/TICE/Mat%25C3%25A9riaux%2520et%2520polym%25C3%25A8res/02Extrait_Mise_en_oeuvre_des_polymeres.pdf?download=true [Consulté le : 2017/18/04] [Google Scholar]
  42. M.S. Despa, K.W. Kelly, J.R. Collier, Injection molding of polymeric LIGA HARMs, Microsyst. Technol. 6(2), 60 (1999) [CrossRef] [Google Scholar]
  43. S.-C. Tseng, Y.-C. Chen, C.-L. Kuo, B.-Y. Shew, A study of integration of LIGA and M-EDM technology on the microinjection molding of ink-jet printers' nozzle plates, Microsyst. Technol. 12(1–2), 116 (2005) [CrossRef] [Google Scholar]
  44. S. Yuan, N.P. Hung, B.K.A. Ngoi, M.Y. Ali, Development of Microreplication Process-Micromolding, Mater. Manuf. Process. 18(5), 731 (2003) [CrossRef] [Google Scholar]
  45. M. Debowski, J. Zhao, A. Spowage, P. Glendenning, Development of techniques and methodologies for micro-and sub-micro evaluation of moulded polymer systems, Citeseer, (2003) [Google Scholar]
  46. C.K. Huang, S.W. Chen, C.T. Yang, Accuracy and mechanical properties of multiparts produced in one mold in microinjection molding, Polym. Eng. Sci. 45(11), 1471 (2005) [CrossRef] [Google Scholar]
  47. H. Ito, H. Suzuki, K. Kazama, T. Kikutani, Polymer structure and properties in micro- and nanomolding process, Curr. Appl. Phys. 9(2), e19 (2009) [CrossRef] [Google Scholar]
  48. X. Lu, L.S. Khim, A statistical experimental study of the injection molding of optical lenses, J. Mater. Process. Technol. 113(1–3), 189 (2001) [CrossRef] [Google Scholar]
  49. Y.-C. Su, J. Shah, L. Lin, Implementation and analysis of polymeric microstructure replication by micro injection molding, J. Micromechanics Microengineering 14(3), 415 (2004) [CrossRef] [Google Scholar]
  50. A.W. McFarland, M.A. Poggi, L.A. Bottomley, J.S. Colton, Injection-moulded scanning force microscopy probes, Nanotechnology 16(8), 1249 (2005) [CrossRef] [Google Scholar]
  51. A.W. McFarland, M.A. Poggi, L.A. Bottomley, J.S. Colton, Injection moulding of high aspect ratio micron-scale thickness polymeric microcantilevers, Nanotechnology 15(1), 1628 (2004) [CrossRef] [Google Scholar]
  52. H. Ito, Y. Yagisawa, T. Saito, T. Yasuhara, T. Kikutani, Y. Yamagiwa, Fundamental Study on Structure Development of Thin-Wall Injection Molded Products, Theor. Appl. Mech. Jpn. 54, 263 (2005) [Google Scholar]
  53. N.B. Malhab, Moulage par microinjection des polymères semi-cristallins, PhD thesis, École nationale supérieure d'arts et métiers − ENSAM, 2012 [Google Scholar]
  54. G. Mougin, Principaux modes de dégradation des outillages en plasturgie, in Bulletin du cercle d'Études des Métaux, Pôle européen de plasturgie, Oyonnax, Vol. Tome XVII, 2015 [Google Scholar]
  55. R. Lévèque, Aciers à outils, évolution des nuances et de leurs traitements de surface, in Bulletin du cercle d'Études des Métaux, École des mines d'Albi, Vol. Tome XVIII, 2015 [Google Scholar]
  56. P. Jacquot, P. Foraison, Traitements appliqués aux outillages et moules d'injection plastique, in Bulletin du cercle d'Études des Métaux, Pôle européen de plasturgie, Oyonnax, Vol. Tome XVII, 2003 [Google Scholar]
  57. B. Saha, W.Q. Toh, E. Liu, S.B. Tor, D.E. Hardt, J. Lee, A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes, J. Micromechanics Microengineering 26(1), 013002 (2016) [CrossRef] [Google Scholar]
  58. C.A. Griffiths, et al., A novel texturing of micro injection moulding tools by applying an amorphous hydrogenated carbon coating, Surf. Coat. Technol. 235, 1 (2013) [CrossRef] [Google Scholar]
  59. C. Donnet, A. Erdemir, Tribology of Diamond-like Carbon Films: Fundamentals and Applications, Springer Science & Business Media, Berlin Heidelberg, 2007 [Google Scholar]
  60. M. Chailly, Influence des traitements de surface de moule dans le procédé d'injection-moulage : application aux défauts d'aspect, PhD thesis, Villeurbanne, INSA, 2007 [Google Scholar]
  61. K. Reichelt, X. Jiang, The preparation of thin films by physical vapour deposition methods, Thin Solid Films 191(1), 91 (1990) [CrossRef] [Google Scholar]
  62. S.M. Rossnagel, Thin film deposition with physical vapor deposition and related technologies, J. Vac. Sci. Technol. Vac. Surf. Films 21(5), S74 (2003) [CrossRef] [Google Scholar]
  63. J.E. Mahan, Physical Vapor Deposition of Thin Films, John Wiley & Sons Inc, 2000, ISBN: 978-0-471-33001-1 [Google Scholar]
  64. T. Prieur, Sélection d'un précurseur pourl'élaboration de couchesatomiques de cuivre : application à l'intégration 3D − Recherche Google, PhD thesis, université de Grenoble, 2012 [Google Scholar]
  65. V.F. Neto, R. Vaz, M.S.A. Oliveira, J. Grácio, CVD diamond-coated steel inserts for thermoplastic mould tools-Characterization and preliminary performance evaluation, J. Mater. Process. Technol. 209(2), 1085 (2009) [CrossRef] [Google Scholar]
  66. P. Loan, H. Prestavoine, Innovations BALINIT pour les outillages de frappe et d'injection, in Bulletin du cercle d'Études des Métaux, École des mines d'Albi, Vol. Tome XVIII, 2015 [Google Scholar]
  67. L. Cunha, et al., Performance of chromium nitride and titanium nitride coatings during plastic injection moulding, Surf. Coat. Technol. 153(2–3), 160 (2002) [CrossRef] [Google Scholar]
  68. L. Cunha, et al., Performance of chromium nitride based coatings under plastic processing conditions, Surf. Coat. Technol. 133–134, 61 (2000) [CrossRef] [Google Scholar]
  69. V. Miikkulainen, et al., Thin films of MoN, WN, and perfluorinated silane deposited from dimethylamido precursors as contamination resistant coatings on micro-injection mold inserts, Surf. Coat. Technol. 202(21), 5103 (2008) [CrossRef] [Google Scholar]
  70. S.J. Bull, R.I. Davidson, E.H. Fisher, A.R. McCabe, A.M. Jones, A simulation test for the selection of coatings and surface treatments for plastics injection moulding machines, Surf. Coat. Technol. 130(2–3), 257 (2000) [CrossRef] [Google Scholar]
  71. S.-H. Yoon, et al., Effect of processing parameters, antistiction coatings, and polymer type when injection molding microfeatures, Polym. Eng. Sci. 50(2), 411 (2010) [CrossRef] [Google Scholar]
  72. M. Matschuk, N.B. Larsen, Injection molding of high aspect ratio sub-100 nm nanostructures, J. Micromechanics Microengineering 23(2), 025003 (2013) [CrossRef] [Google Scholar]
  73. C.A. Griffiths, S.S. Dimov, E.B. Brousseau, C. Chouquet, J. Gavillet, S. Bigot, Investigation of surface treatment effects in micro-injection-moulding, Int. J. Adv. Manuf. Technol. 47(1–4), 99 (2010) [CrossRef] [Google Scholar]
  74. T.C. Hobæk, M. Matschuk, J. Kafka, H.J. Pranov, N.B. Larsen, Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding, J. Micromechanics Microengineering 25(3), 035018 (2015) [CrossRef] [Google Scholar]
  75. M. Van Stappen, K. Vandierendonck, C. Mol, E. Beeckman, E. De Clercq, Practice vs. laboratory tests for plastic injection moulding, Surf. Coat. Technol. 142–144, 143 (2001) [CrossRef] [Google Scholar]
  76. J.-Y. Charmeau, M. Chailly, V. Gilbert, Y. Béreaux, Influence of mold surface coatings in injection molding. Application to the ejection stage, Int. J. Mater. Form. 1(1), 699 (2008) [CrossRef] [Google Scholar]
  77. P. Jones, Mould design guide, 2015 [Google Scholar]
  78. J.-Y. Chen, S.-J. Hwang, Design and fabrication of an adhesion force tester for the injection moulding process, Polym. Test. 32(1), 22 (2013) [CrossRef] [Google Scholar]
  79. X. Zhang, B. Sun, N. Zhao, Q. Li, J. Hou, W. Feng, Experimental study on the surface characteristics of Pd-based bulk metallic glass, Appl. Surf. Sci. 321, 420 (2014) [CrossRef] [Google Scholar]
  80. N. Bagcivan, K. Bobzin, T. Brögelmann, C. Kalscheuer, Development of (Cr, Al)ON coatings using middle frequency magnetron sputtering and investigations on tribological behavior against polymers, Surf. Coat. Technol. 260, 347 (2014) [Google Scholar]
  81. G. Zitzenbacher, Z. Huang, M. Längauer, C. Forsich, C. Holzer, Wetting behavior of polymer melts on coated and uncoated tool steel surfaces, J. Appl. Polym. Sci. 133(21), (2016) [CrossRef] [Google Scholar]
  82. C. Rytka, N. Opara, N.K. Andersen, P.M. Kristiansen, A. Neyer, On The Role of Wetting, Structure Width, and Flow Characteristics in Polymer Replication on Micro- and Nanoscale, Macromol. Mater. Eng. 301, 597 (2016) [Google Scholar]
  83. J.M. Stormonth-Darling, R.H. Pedersen, C. How, N. Gadegaard, Injection moulding of ultra high aspect ratio nanostructures using coated polymer tooling, J. Micromechanics Microengineering 24 (7), 075019 (2014) [CrossRef] [Google Scholar]
  84. P. Roy, Microplasturgie, Techn. Ingenieur, AM3701 (2001) [Google Scholar]
  85. J. Giboz, T. Copponnex, P. Mélé, Microinjection molding of thermoplastic polymers: a review, J. Micromechanics Microengineering 17(6), R96 (2007) [CrossRef] [Google Scholar]
  86. U.M. Attia, J.R. Alcock, A review of micro-powder injection moulding as a microfabrication technique, J. Micromechanics Microengineering 21(4), 043001 (2011) [CrossRef] [Google Scholar]
  87. Y. Xia, G.M. Whitesides, Soft Lithography, Angew. Chem. In t. Ed. 37(5), 550 (1998) [CrossRef] [Google Scholar]
  88. J.P. Rolland, E.C. Hagberg, G.M. Denison, K.R. Carter, J.M. De Simone, High-Resolution Soft Lithography: Enabling Materials for Nanotechnologies, Angew. Chem. 116(43), 5920 (2004) [CrossRef] [Google Scholar]
  89. A.K. Dubey, V. Yadava, Laser beam machining-A review, Int. J. Mach. Tools Manuf. 48(6), 609 (2008) [CrossRef] [Google Scholar]
  90. H.E. Jeong, M.K. Kwak, C.I. Park, K.Y. Suh, Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography, J. Colloid Interface Sci. 339(1), 202 (2009) [CrossRef] [Google Scholar]
  91. S.-M. Lee, T.H. Kwon, Mass-producible replication of highly hydrophobic surfaces from plant leaves, Nanotechnology 17(13), 3189 (2006) [CrossRef] [Google Scholar]
  92. R.A. Singh, E.-S. Yoon, H.J. Kim, J. Kim, H.E. Jeong, K.Y. Suh, Replication of surfaces of natural leaves for enhanced micro-scale tribological property, Mater. Sci. Eng. C 27(4), 875 (2007) [CrossRef] [Google Scholar]
  93. Y. Xue, Voie innovante pour la nano micro texturation de surfaces métalliques à base d'assemblage de nanoparticules d'Au : application superhydrophobe, PhD thesis, université Pierre et Marie Curie, Paris VI, 2014 [Google Scholar]
  94. Morphotonix, Industries. Disponible sur: http://www.morphotonix.com/industries/ [Consulté le: 2017/10/04] [Google Scholar]
  95. J. Yang, Y. Zhao, X. Zhu, Transition between nonthermal and thermal ablation of metallic targets under the strike of high-fluence ultrashort laser pulses, Appl. Phys. Lett. 88(9), 094101 (2006) [CrossRef] [Google Scholar]
  96. B.N. Chichkov, C. Momma, S. Nolte, A. Von, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. Mater. Sci. Process. 63(2), 109 (1996) [CrossRef] [Google Scholar]
  97. N.M. Bulgakova, I.M. Bourakov, Phase explosion under ultrashort pulsed laser ablation: Modeling with analysis of metastable state of melt, Appl. Surf. Sci. 197–198, 41 (2002) [CrossRef] [Google Scholar]
  98. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, D.L. Von, Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy, J. Appl. Phys. 85(6), 3301 (1999) [CrossRef] [Google Scholar]
  99. W.G. Roeterdink, L.B.F. Juurlink, O.P.H. Vaughan, D. Dura, M. Bonn, A.W. Kleyn, Coulomb explosion in femtosecond laser ablation of Si(111), Appl. Phys. Lett. 82(23), 4190 (2003) [CrossRef] [Google Scholar]
  100. R. Stoian, D. Ashkenasi, A. Rosenfeld, E.E.B. Campbell, Coulomb explosion in ultrashort pulsed laser ablation of Al2O3, Phys. Rev. B − Condens. Matter Mater. Phys. 62(19), 13167 (2000) [CrossRef] [Google Scholar]
  101. J. Houzet, N. Faure, M. Larochette, A.-C. Brulez, S. Benayoun, C. Mauclair, Ultrafast laser spatial beam shaping based on Zernike polynomials for surface processing, Opt. Express 24(6), 6542 (2016) [CrossRef] [Google Scholar]
  102. É. Audouard, Lasers à impulsions ultrabrèves : applications, Tech. Ing. TIB452DUO, e6455 (2011) [Google Scholar]
  103. N. Stutzmann, T.A. Tervoort, C.W.M. Bastiaansen, K. Feldman, P. Smith, Solid-State Replication of Relief Structures in Semicrystalline Polymers, Adv. Mater. 12(8), 557 (2000) [CrossRef] [Google Scholar]
  104. T. Ibatan, M.S. Uddin, M.A.K. Chowdhury, Recent development on surface texturing in enhancing tribological performance of bearing sliders, Surf. Coat. Technol. 272, 102 (2015) [CrossRef] [Google Scholar]
  105. S. Hammouti, Micro-texturation de surface du PEEK par laser femtoseconde : étude locale de l'interaction laser-polymère et apport de la texturation de surface aux propriétés tribologiques d'un contact PEEK/PEEK, PhD thesis, École centrale de Lyon, Écully, 2015 [Google Scholar]
  106. P. Bizi Bandoki, Structuration multi-échelle d'alliages métalliques au moyen d'un laser Femtoseconde, Écully, École centrale de Lyon, 2012 [Google Scholar]
  107. J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Femtosecond laser ablation of silicon-modification thresholds and morphology, Appl. Phys. Mater. Sci. Process. 74(1), 19 (2002) [CrossRef] [Google Scholar]
  108. T.-H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Microstructuring of silicon with femtosecond laser pulses, Appl. Phys. Lett. 73(12), 1673 (1998) [CrossRef] [Google Scholar]
  109. P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, E. Audouard, Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment, Appl. Surf. Sci. 257(12), 5213 (2011) [CrossRef] [Google Scholar]
  110. M. Birnbaum, Semiconductor Surface Damage Produced by Ruby Lasers, J. Appl. Phys. 36(11), 3688 (1965) [CrossRef] [Google Scholar]
  111. P.M. Fauchet, A.E. Siegman, Surface ripples on silicon and gallium arsenide under picosecond laser illumination, Appl. Phys. Lett. 40(9), 824 (1982) [CrossRef] [Google Scholar]
  112. L. Qi, F. Li, H. Lin, J. Hu, On the formation of regular sub-wavelength ripples by femtosecond laser pulses on silicon, Opt. − Int. J. Light Electron Opt. 126(24), 4905 (2015) [CrossRef] [Google Scholar]
  113. J.F. Young, J.S. Preston, D. Van, J.E. Sipe, Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass, Phys. Rev. B 27(2), 1155 (1983) [CrossRef] [Google Scholar]
  114. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Laser-induced periodic surface structure. I. Theory, Phys. Rev. B 27(2), 1141 (1983) [CrossRef] [Google Scholar]
  115. J. Reif, et al., On large area LIPSS coverage by multiple pulses, Appl. Surf. Sci. 336, 249 (2015) [CrossRef] [Google Scholar]
  116. K.M.B. Jansen, D.J. Van Dijk, M.H. Husselman, Effect of processing conditions on shrinkage in injection molding, Polym. Eng. Sci. 38(5), 838 (1998) [CrossRef] [Google Scholar]
  117. K.M.B. Jansen, R. Pantani, G. Titomanlio, As-molded shrinkage measurements on polystyrene injection molded products, Polym. Eng. Sci. 38(2), 254 (1998) [CrossRef] [Google Scholar]
  118. H.-Y. Lin, W.-B. Young, Analysis of the filling capability to the microstructures in micro-injection molding, Appl. Math. Model. 33(9), 3746 (2009) [CrossRef] [Google Scholar]
  119. N. Zhang, J.S. Chu, C.J. Byrne, D.J. Browne, M.D. Gilchrist, Replication of micro/nano-scale features by micro injection molding with a bulk metallic glass mold insert, J. Micromechanics Microengineering 22(6), 065019 (2012) [CrossRef] [Google Scholar]
  120. K. Mönkkönen, et al., Replication of sub-micron features using amorphous thermoplastics, Polym. Eng. Sci. 42(7), 1600 (2002) [CrossRef] [Google Scholar]
  121. V. Kalima, et al., Transparent thermoplastics: Replication of diffractive optical elements using micro-injection molding, Opt. Mater. 30(2), 285 (2007) [CrossRef] [Google Scholar]
  122. J. Zhao, R.H. Mayes, G. Chen, H. Xie, P.S. Chan, Effects of process parameters on the micro molding process, Polym. Eng. Sci. 43(9), 1542 (2003) [CrossRef] [Google Scholar]
  123. B. Sha, S. Dimov, C. Griffiths, M.S. Packianather, Investigation of micro-injection moulding: Factors affecting the replication quality, J. Mater. Process. Technol. 183(2–3), 284 (2007) [CrossRef] [Google Scholar]
  124. I. Ariño, U. Kleist, G.G. Barros, P.-A. Johansson, M. Rigdahl, Surface texture characterization of injection-molded pigmented plastics, Polym. Eng. Sci. 44(9), 1615 (2004) [CrossRef] [Google Scholar]
  125. E. Huovinen, L. Takkunen, M. Suvanto, T.A. Pakkanen, Fabrication and quantitative roughness analysis of hierarchical multiscale polymer surface structures, J. Micromechanics Microengineering 24(5), 055017 (2014) [CrossRef] [Google Scholar]
  126. C. Rytka, P.M. Kristiansen, A. Neyer, Iso- and variothermal injection compression moulding of polymer micro- and nanostructures for optical and medical applications, J. Micromechanics Microengineering 25(6), 065008 (2015) [CrossRef] [Google Scholar]
  127. V. Bellantone, R. Surace, G. Trotta, I. Fassi, Replication capability of micro injection moulding process for polymeric parts manufacturing, Int. J. Adv. Manuf. Technol. 67(5–8), 1407 (2013) [CrossRef] [Google Scholar]
  128. M. Matschuk, H. Bruus, N.B. Larsen, Nanostructures for all-polymer microfluidic systems, Microelectron. Eng. 87(5–8), 1379 (2010) [CrossRef] [Google Scholar]
  129. J. Chu, M.R. Kamal, S. Derdouri, A. Hrymak, Characterization of the microinjection molding process, Polym. Eng. Sci. 50(6), 1214 (2010) [CrossRef] [Google Scholar]
  130. V. Miikkulainen, T. Rasilainen, E. Puukilainen, M. Suvanto, T.A. Pakkanen, Atomic Layer Deposition as Pore Diameter Adjustment Tool for Nanoporous Aluminum Oxide Injection Molding Masks, Langmuir 24(9), 4473 (2008) [CrossRef] [Google Scholar]
  131. J.M. Dealy, Rheometers for molten plastics: a practical guide to testing and property measurement, Van Nostrand Reinhold Company, Springer-Verlag, Berlin Heidelberg, 1982 ISBN-13: 978-0442218744 [Google Scholar]
  132. R. Ballman, T. Shusman, Easy way to calculate injection molding set-up time, Mod. Plast. 126, 130 (1959) [Google Scholar]
  133. G.R. Berger, D.P. Gruber, W. Friesenbichler, C. Teichert, M. Burgsteiner, Replication of Stochastic and Geometric Micro Structures − Aspects of Visual Appearance, Int. Polym. Process. 26(3), 313 (2011) [CrossRef] [Google Scholar]
  134. D. Yao, S.-C. Chen, B.H. Kim, Rapid thermal cycling of injection molds: An overview on technical approaches and applications, Adv. Polym. Technol. 27(4), 233 (2008) [CrossRef] [Google Scholar]
  135. M.J. Liou, N.P. Suh, Reducing residual stresses in molded parts, Polym. Eng. Sci. 29(7), 441 (1989) [CrossRef] [Google Scholar]
  136. G. Lucchetta, E. Ferraris, G. Tristo, D. Reynaerts, Influence of mould thermal properties on the replication of micro parts via injection moulding, Procedia CIRP 2, 113 (2012) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.