Issue
Matériaux & Techniques
Volume 109, Number 5-6, 2021
Special Issue on ‘Materials and Society: the circular economy, design for circularity and industrial symbiosis’, edited by Jean-Pierre Birat, Gaël Fick, Nicolas Perry, Andrea Declich, Leiv Kolbensein, Dominique Millet and Thecle Alix
Article Number 502
Number of page(s) 13
Section Environnement − recyclage / Environment − recycling
DOI https://doi.org/10.1051/mattech/2022010
Published online 28 February 2022
  1. European Steel Association, European Steel in Figures 2020, 2020, Available from https://www.eurofer.eu/assets/Uploads/European-Steel-in-Figures-2020.pdf [Online accessed: 6/10/2021] [Google Scholar]
  2. D. Ibarra, J. Ganzarain, I.J. Igartua, Business model innovation through Industry 4.0: A review, Proc. Manuf. 22, 4–10 (2018), https://doi.org/10.1016/j.promfg.2018.03.002 [Google Scholar]
  3. T.A. Branca, B. Fornai, V. Colla, et al., The challenge of digitalization in the steel sector, Metals 10(2), 1–23 (2020), https://doi.org/10.3390/met10020288 [Google Scholar]
  4. International Society of Automation, ANSI/ISA-95.00.01 Enterprise-Control System Integration – Part I: Models and Terminology, 2010 [Google Scholar]
  5. K. Schweichhart, Reference Architectural Model Industry 4.0 (RAMI 4.0), 2016, Available from https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf [Google Scholar]
  6. V. Colla, C. Pietrosanti, E. Malfa, et al., Environment 4.0: How digitalization and machine learning can improve the environmental footprint of the steel production processes, Materiaux & Techniques 108(5-6), (2020), https://doi.org/10.1051/mattech/2021007 [Google Scholar]
  7. T.A. Branca, V. Colla, D. Algermissen, et al., Reuse and recycling of by-products in the steel sector: Recent achievements paving the way to circular economy and industrial symbiosis in Europe, Metals 10(3), (2020), https://doi.org/10.3390/met10030345 [Google Scholar]
  8. J. Feliks, K. Majewska, Agent-based modeling of steel production processes under uncertainty, in: Proceedings 24th International Conference on Metallurgy and Materials, METAL 2015, 2015, pp. 1739–1744 [Google Scholar]
  9. W. Shen, Q. Hao, H.J. Yoon, et al., Applications of agent-based systems in intelligent manufacturing: An updated review, Adv. Eng. Inform. 20, 415–431 (2006), https://doi.org/10.1016/j.aei.2006.05.004 [CrossRef] [Google Scholar]
  10. S. Karnouskos, P. Leitao, L. Ribeiro, et al., Industrial agents as a key enabler for realizing industrial cyber-physical systems: Multiagent systems entering industry 4.0, IEEE Ind. Electron. Mag. 14(3), 18–32 (2020), https://doi.org/10.1109/MIE.2019.2962225 [CrossRef] [Google Scholar]
  11. V. Gorodetsky, V. Larukchin, P. Skobelev, Conceptual model of digital platform for enterprises of industry 5.0, in: Studies in Computational Intelligence, 2020, pp. 35–40, https://doi.org/10.1007/978-3-030-32258-8_4 [Google Scholar]
  12. L. Monostori, J. Váncza, S.R.T. Kumara, Agent-based systems for manufacturing, CIRP Ann. Manuf. Technol. 55(2), 697–720 (2006), https://doi.org/10.1016/j.cirp.2006.10.004 [CrossRef] [Google Scholar]
  13. S. Jacobi, C. Madrigal-Mora, E. León-Soto, et al., AgentSteel: An agent-based online system for the planning and observation of steel production, in: Proceedings of the International Conference on Autonomous Agents, 2005, pp. 155–160 [Google Scholar]
  14. L. Sun, F. Luan, A multi-agent framework for the scheduling of steel-making and continuous casting process with lagrangian relaxation neural networks, IFAC-PapersOnLine 28(25), 108–113 (2015), https://doi.org/10.1016/j.ifacol.2015.11.068 [CrossRef] [Google Scholar]
  15. M.J. Neuer, F. Marchiori, A. Ebel, et al., Dynamic reallocation and rescheduling of steel products using agents with strategical anticipation and virtual market structures, IFAC-PapersOnLine 49(20), 232–237 (2016), https://doi.org/10.1016/j.ifacol.2016.10.126 [CrossRef] [Google Scholar]
  16. F. Marchiori, A. Belloni, M. Benini, et al., Integrated dynamic energy management for steel production, Energy Proc. 105, 2772–2777 (2017), https://doi.org/10.1016/j.egypro.2017.03.597 [CrossRef] [Google Scholar]
  17. F. Marchiori, M. Benini, S. Cateni, et al., Agent-based approach for energy demand-side management, Stahl und Eisen 138(2), 25–29 (2018) [Google Scholar]
  18. S. Franklin, A. Graesser, Is it an agent, or just a program? A taxomony of autonomous agents, in: J.P. Müller, M.J. Wooldridge, N.R. Jennings, eds., Intelligent Agents III Agent Theories, Architectures, and Languages, Springer Berlin Heidelberg, 1996, pp. 21–35 [Google Scholar]
  19. Y. Labrou, T. Finin, Y. Peng, Agent communication languages: The current landscape, IEEE Intell. Syst. Their Appl. 14(2), 45–52 (1999), https://doi.org/10.1109/5254.757631 [CrossRef] [Google Scholar]
  20. H.S. Nwana, L. Lee, N.R. Jennings, Co-ordination in software agent systems, BT Technol. J., 42–58 (1996) [Google Scholar]
  21. J.E. Doran, S. Franklin, N.R. Jennings, et al., On cooperation in multi-agent systems, Knowl. Eng. Rev., 1–7 (1997), https://doi.org/10.1017/S0269888997003111 [Google Scholar]
  22. T. Labeodan, K. Aduda, G. Boxem, et al., On the application of multi-agent systems in buildings for improved building operations, performance and smart grid interaction – A survey, Renew. Sustain. Energy Rev. 50, 1405–1414 (2015), Elsevier Ltd, https://doi.org/10.1016/j.rser.2015.05.081 [CrossRef] [Google Scholar]
  23. G.H. Merabet, M. Essaaidi, H. Talei, et al., Applications of multi-agent systems in smart grids: A survey, in: Proceedings on International Conference on Multimedia Computing and Systems, Sep. 2014, pp. 1088–1094, https://doi.org/10.1109/ICMCS.2014.6911384 [Google Scholar]
  24. B. Chen, H.H. Cheng, A review of the applications of agent technology in traffic and transportation systems, IEEE Trans. Intell. Transp. Syst. 11, 485–497 (2010), https://doi.org/10.1109/TITS.2010.2048313 [CrossRef] [Google Scholar]
  25. E. Shakshuki, M. Reid, Multi-agent system applications in healthcare: Current technology and future roadmap, Proc. Comput. Sci. 52(1), 252–261 (2015), https://doi.org/10.1016/j.procs.2015.05.071 [CrossRef] [Google Scholar]
  26. V. Iannino, V. Colla, J. Denker, et al., A CPS-based simulation platform for long production factories, Metals 9(10), 1–20 (2019), https://doi.org/10.3390/met9101025 [CrossRef] [Google Scholar]
  27. V. Iannino, C. Mocci, M. Vannocci, et al., An event-driven agent-based simulation model for industrial processes, Appl. Sci. 10(12), 1–22 (2020), https://doi.org/10.3390/app10124343 [CrossRef] [Google Scholar]
  28. L. Tang, J. Liu, A. Rong, et al., A review of planning and scheduling systems and methods for integrated steel production, Eur. J. Oper. Res. 133(1), 1–20 (2001), https://doi.org/10.1016/S0377-2217(00)00240-X [CrossRef] [Google Scholar]
  29. M. Iglesias-Escudero, J. Villanueva-Balsera, F. Ortega-Fernandez, et al., Planning and scheduling with uncertainty in the steel sector: A review, Appl. Sci. (2019), https://doi.org/10.3390/app9132692 [Google Scholar]
  30. J. Zhao, Q.L. Liu, W. Wang, Models and algorithms of production scheduling in tandem cold rolling, Zidonghua Xuebao/Acta Autom. Sin. 34(5), 565–573 (2008), https://doi.org/10.3724/SP.J.1004.2008.00565 [Google Scholar]
  31. J. Wan, et al., Toward dynamic resources management for IoT-based manufacturing, IEEE Commun. Mag. 56(2), 52–59 (2018), https://doi.org/10.1109/MCOM.2018.1700629 [CrossRef] [Google Scholar]
  32. V. Iannino, C. Mocci, V. Colla, A brokering-based interaction protocol for dynamic resource allocation in steel production processes, in: Advances in Intelligent Systems and Computing, 1368 AISC, pp. 119–129, 2021, https://doi.org/10.1007/978-3-030-72654-6_12 [Google Scholar]
  33. V. Iannino, C. Mocci, V. Colla, A hybrid peer-to-peer architecture for agent-based steel manufacturing processes, IFAC-PapersOnLine 54(1), 528–33 (2021), https://doi.org/10.1016/j.ifacol.2021.08.167 [CrossRef] [Google Scholar]
  34. O. Taisir, Total productive maintenance review and overall equipment effectiveness measurement, Jordan J. Mech. Ind. Eng. 4(4), 517–522 (2010) [Google Scholar]
  35. S. Kumar, R. Bhushan, S. Swaroop, Study of total productive maintenance & its implementation approach in steel manufacturing industry: A case study of equipment wise breakdown analysis, Int. Res. J. Eng. Technol. 4(8), 608–613 (2017), Available from https://www.academia.edu/34509469/Study_of_total_productive_maintenance_and_its_implementation_approach_in_steel_manufacturing_industry_A_case_study_of_equipment_wise_breakdown_analysis [Online accessed: 6/16/2021] [Google Scholar]
  36. A. Hauser, M. Weitzer, S. Gunsch, et al., Dynamic hydrogen-intensified methanation of synthetic by-product gases from steelworks, Fuel Process. Technol. 217, 1–10 (2021), https://doi.org/10.1016/j.fuproc.2020.106701 [CrossRef] [Google Scholar]
  37. A. Zaccara, A. Petrucciani, I. Matino, et al., Renewable hydrogen production processes for the off-gas valorization in integrated steelworks through hydrogen intensified methane and methanol syntheses, Metals 10(11), 1–24 (2020), https://doi.org/10.3390/met10111535 [CrossRef] [Google Scholar]
  38. M. Bampaou, K. Panopoulos, P. Seferlis, et al., Integration of renewable hydrogen production in steelworks off-gases for the synthesis of methanol and methane, Energies 14(10), 2904 (2021), https://doi.org/10.3390/en14102904 [CrossRef] [Google Scholar]
  39. I. Matino, S. Dettori, V. Colla, et al., Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management, Appl. Energy 253, (2019), https://doi.org/10.1016/j.apenergy.2019.113578 [CrossRef] [Google Scholar]
  40. S. Dettori, I. Matino, V. Colla, et al., A deep learning-based approach for forecasting off-gas production and consumption in the blast furnace, Neutr. Comput. Appl., 1–14 (2021), https://doi.org/10.1007/s00521-021-05984-x [Google Scholar]
  41. S. Dettori, A. Maddaloni, F. Galli, et al., Steam turbine rotor stress control through nonlinear model predictive control, Energies 14(13), 1–30 (2021), https://doi.org/10.3390/en14133998 [Google Scholar]
  42. P. Leitão, V. Mařík, P. Vrba, Past, present, and future of industrial agent applications, IEEE Trans. Ind. Inform. 9(4), 2360–2372 (2013), https://doi.org/10.1109/TII.2012.2222034 [CrossRef] [Google Scholar]
  43. V. Marik, V. Gorodetsky, P. Skobelev, Multi-agent technology for industrial applications: Barriers and trends, IEEE Trans. Syst. Man, Cybern.: Syst. 1980–1987 (2020), https://doi.org/10.1109/SMC42975.2020.9283071 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.