Open Access
Issue
Matériaux & Techniques
Volume 106, Number 4, 2018
Article Number 405
Number of page(s) 8
Section Sélection des matériaux et des procédés / Materials and processes selection
DOI https://doi.org/10.1051/mattech/2018050
Published online 05 December 2018
  1. L.C. Zhang, H. Attar, Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review, Adv. Eng. Mater. 18, 463 (2016) [CrossRef] [Google Scholar]
  2. B. Vrancken, L. Thijs, J.P. Kruth, J. Van Humbeeck, Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting, Acta Mater. 68, 150 (2014) [CrossRef] [Google Scholar]
  3. Y.J. Liu, X.P. Li, L.C. Zhang, T.B. Sercombe, Processing and properties of topologically optimised biomedical Ti-24Nb-4Zr-8Sn scaffolds manufactured by selective laser melting, Mater. Sci. Eng. A 642, 268 (2015) [CrossRef] [Google Scholar]
  4. E. Chlebus, B. Kuźnicka, R. Dziedzic, T. Kurzynowski, Titanium alloyed with rhenium by selective laser melting, Mater. Sci. Eng. A 620, 155 (2015) [CrossRef] [Google Scholar]
  5. Y. Zhou, S.F. Wen, B. Song, X. Zhou, Q. Teng, Q.S. Wei, Y.S. Shei, A novel titanium alloy manufactured by selective laser melting: microstructure, high-temperature oxidation resistance, Mater. Des. 89, 1199 (2016) [CrossRef] [Google Scholar]
  6. M. Fischer, D. Joguet, G. Robin, L. Peltier, P. Laheurte, In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders, Mater. Sci. Eng. C 62, 852 (2016) [CrossRef] [Google Scholar]
  7. L. Yan, Y. Yuan, L. Ouyang, H. Li, A. Mirzasadeghi, L. Li, Improved mecha-nical properties of the new Ti-15Ta-xZr alloys fabricated by selective laser melting for biomedical application, J. Alloys Compd. 688, 156 (2016) [CrossRef] [Google Scholar]
  8. T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun, T. Nakano, Crystallographic texture control of beta-type Ti-15Mo-5Zr-3Al alloy by selective laser melting for the development of novel implants with a biocompatible low Young’s modulus, Scr. Mater. 132, 34 (2017) [Google Scholar]
  9. K. Wei, Z. Wang, X. Zeng, Preliminary investigation on selective laser melting of Ti-5Al-2.5Sn C-Ti alloy: From single tracks to bulk 3D components, J. Mater. Process. Technol. 244, 73 (2017) [CrossRef] [Google Scholar]
  10. W. Serbiński, A. Zieliński, T. Seramak, A. Ossowska, S. Sobieszczyk, M. Supernak, B. Majkowska, Surface treatment of porous Ti-13Nb-13Zr alloy for biomedical applications, Inżynieria Mater. 185, 6 (2012) [Google Scholar]
  11. P.K. Maji, A.J. Banerjee, P.S. Banerjee. S. Karmakar, Additive manufacturing in prosthesis development – a case study, Rapid Prototyp. J. 20, 480 (2014) [CrossRef] [Google Scholar]
  12. D. Joguet, S. Costil, H. Liao, Y. Danlos, Porosity content control of CoCrMo and titanium parts by Taguchi method applied to selective laser melting process parameter, Rapid Prototyp. J. 22, 20 (2016) [CrossRef] [Google Scholar]
  13. L.Y. Chen, J.C. Huang, C.H. Lin, et al., Anisotropic response of Ti-6Al-4V alloy fabricated by 3D printing selective laser melting, Mater. Sci. Eng. A 682, 389 (2017) [CrossRef] [Google Scholar]
  14. A.R. Lapcevic, D.P. Jevremovic, T.M. Puskar, et al., Comparative analysis of structure and hardness of cast and direct metal laser sintering produced Co-Cr alloys used for dental devices, Rapid Prototyp. J. 22, 144 (2016) [CrossRef] [Google Scholar]
  15. M. Fantini, F. De Crescenzio, L. Ciocca, F. Persiani, Additive manufacturing to assist prosthetically guided bone regeneration of atrophic maxillary arches, Rapid Prototyp. J. 24, 705 (2015) [CrossRef] [Google Scholar]
  16. P.J.T. Conradie, D. Dimitrov, G.A. Oosthuizen, et al., Comparative assessment of process combination for Ti6Al4V components, Rapid Prototyp. J. 23, 624 (2017) [CrossRef] [Google Scholar]
  17. H. Hassanin, et al., Net-shape manufacturing using hybrid selective laser melting/hot isostatic pressing, Rapid Prototyp. J. 23, 720 (2017) [CrossRef] [Google Scholar]
  18. Q. Zhang, et al., Microstructure and mechanical properties of Ti6Al4V alloy prepared by selective laser melting combined with precision forging, Trans. Nonferrous Met. Soc. China 27, 1036 (2017) [CrossRef] [Google Scholar]
  19. A.M. Khorasani, I. Gibson. M. Goldberg, G. Littlefair, On the role of different annealing heat treatments on mechanical properties and microstructure of selective laser melted and conventional wrought Ti-6Al-4V, Rapid Prototyp. J. 23, 295 (2017) [CrossRef] [Google Scholar]
  20. E. Santos, et al., Fabrication of titanium dental implants by selective laser melting, Proc. SPIE 5662, 5th Intl. Symp. Laser Precision Microfabr., 2004 [Google Scholar]
  21. B. Gao, J. Wu, X. Zhao, H. Tan, Fabricating titanium denture base plate by laser rapid forming, Rapid Prototyp. J. 15, 133 (2009) [CrossRef] [Google Scholar]
  22. Y. Yang, J.-B. Lu, Z.-Y. Luo, D. Wang, Accuracy and density optimization in directly fabricating customized orthodontic production by selective laser melting, Rapid Prototyp. J. 18, 482 (2012) [CrossRef] [Google Scholar]
  23. M. Kanazawa, M. Iwaki, S. Minakuchi, N. Nomura, Fabrication of titanium alloy frameworks for complete dentures by selective laser melting, J. Prosthet. Dentistry 112, 1441 (2014) [CrossRef] [Google Scholar]
  24. N.K. Tolochko, et al., Mechanisms of selective laser sintering and heat transfer in Ti powder, Rapid Prototyp. J. 9, 314 (2003) [CrossRef] [Google Scholar]
  25. B. Vandenbroucke, J.-P. Kruth, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyp. J. 13, 196 (2007) [CrossRef] [Google Scholar]
  26. T. Marcu, et al., Selective laser melting of Ti6Al7Nb with hydroxyapatite addition, Rapid Prototyp. J. 20, 301 (2014) [CrossRef] [Google Scholar]
  27. X.P. Li, J. Van Humbeeck, J.P. Kruth, Selective laser melting of weak-textured commercially pure titanium with high strength and ductility: A study from laser power perspective, Mater. Des. 116, 352 (2017) [CrossRef] [Google Scholar]
  28. S. Bremen, W. Meiner, A. Diatlow, Selective laser melting. A manufacturing technology for the future? Laser Technik J. 2, 33 (2012) [CrossRef] [Google Scholar]
  29. E. Chlebus, B. Kuźnicka, R. Dziedzic, T. Kurzynowski, Titanium alloyed with rhenium by selective laser melting, Mater. Sci. Eng. A 620, 155 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.