Open Access
Review
Numéro
Matériaux & Techniques
Volume 111, Numéro 1, 2023
Numéro d'article 103
Nombre de pages 16
Section Materials production and processing
DOI https://doi.org/10.1051/mattech/2023013
Publié en ligne 29 mai 2023
  1. W.S.W. Harun, M.S.I.N. Kamariah, N. Muhamad, et al., A review of powder additive manufacturing processes for metallic biomaterials, Powder Technol. 327, 128–151 (2018) [CrossRef] [Google Scholar]
  2. D. Powell, A. Rennie, D. Powell, et al., Understanding powder degradation in metal additive manufacturing to allow the upcycling of recycled powders, J. Clean. Prod. 268, 122077 (2020) [CrossRef] [Google Scholar]
  3. F.T. Piller, R. Poprawe, H.J. Schleifenbaum, et al., Introducing a holistic profitability model for additive manufacturing: an analysis of Laser Powder Bed Fusion, IEEE Int. Conf. Ind. Eng. Eng. Manag. 2019, 1730–1735 (2019) [Google Scholar]
  4. A. Smith, Opportunities for and potential contribution of social science research relating to the nature and development of Additive Manufacturing?, Proj. Cent. Bus. Relationships, Accountability, Sustain. Soc. (BRASS), Cardiff Univ., 2019 [Google Scholar]
  5. V. Petrovic, J. Vicente Haro Gonzalez, O. Jordá Ferrando, et al., Additive layered manufacturing: sectors of industrial application shown through case studies, Int. J. Prod. Res. 49(4), 1061–1079 (2011) [CrossRef] [Google Scholar]
  6. T. Fedina, J. Sundqvist, A.F.H. Kaplan, Spattering and oxidation phenomena during recycling of low alloy steel powder in Laser Powder Bed Fusion, Mater. Today Commun. 27, 102241 (2021) [CrossRef] [Google Scholar]
  7. S.A. Farzadfar, M.J. Murtagh, N. Venugopal, Impact of IN718 bimodal powder size distribution on the performance and productivity of Laser Powder Bed Fusion additive manufacturing process, Powder Technol. 375, 60–80 (2020) [CrossRef] [Google Scholar]
  8. F. Ahmed, U. Ali, D. Sarker, et al., Study of powder recycling and its effect on printed parts during Laser Powder Bed Fusion of 17-4 PH stainless steel, J. Mater. Process. Technol. 278, 116522 (2020) [CrossRef] [Google Scholar]
  9. V. Seyda, N. Kaufmann, C. Emmelmann, Investigation of aging processes of Ti-6Al-4V powder material in laser melting, Phys. Procedia 39, 425–431 (2012) [CrossRef] [Google Scholar]
  10. L. Cordova, M. Campos, T. Tinga, Revealing the effects of powder reuse for selective laser melting by powder characterization, JOM. 71(3), 1062–1072 (2019) [CrossRef] [Google Scholar]
  11. Y. Sun, M. Aindow, R.J. Hebert, The effect of recycling on the oxygen distribution in Ti-6Al-4V powder for additive manufacturing, Mater. High Temp. 35(1-3), 217–224 (2018) [CrossRef] [Google Scholar]
  12. F. Del Re, V. Contaldi, A. Astarita, et al., Statistical approach for assessing the effect of powder reuse on the final quality of AlSi10Mg parts produced by Laser Powder Bed Fusion additive manufacturing, Int. J. Adv. Manuf. Technol. 97(5-8), 2231–2240 (2018) [CrossRef] [Google Scholar]
  13. Officiel Prevention, La prévention des risques chimiques des métaux et composés métalliques, 2014, [Online] Available from https://www.officiel-prevention.com/dossier/protections-collectives-organisation-ergonomie/risque-chimique-2/la-prevention-des-risques-chimiques-des-metaux-et-composes-metalliques [Google Scholar]
  14. A.K. Lakshminarayanan, V. Balasubramanian, K. Elangovan, Effect of welding processes on tensile properties of AA6061 aluminium alloy joints, Int. J. Adv. Manuf. Technol. 40(3-4), 286–296 (2009) [CrossRef] [Google Scholar]
  15. C.E. Cross, On the origin of weld solidification cracking, Hot Crack. Phenom. Welds 1, 3–18 (2005) [CrossRef] [Google Scholar]
  16. D.L. Katgerman, D.G. Eskin, In search of the prediction of hot cracking in aluminium alloys, Hot Crack. Phenom. Welds II, 1, 3–18 (2008) [Google Scholar]
  17. S.Z. Uddin, L.E. Murr, C.A. Terrazas, et al., Processing and characterization of crack-free aluminum 6061 using high-temperature heating in Laser Powder Bed Fusion additive manufacturing, Addit. Manuf. 22, 405–415 (2018) [Google Scholar]
  18. J.H. Martin, B.D. Yahata, J.M. Hundley, et al., 3D printing of high-strength aluminium alloys, Nature 549(7672), 365–369 (2017) [CrossRef] [Google Scholar]
  19. A. Mehta, L. Zhou, T. Huynh, et al., Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the Laser Powder Bed Fusion, Addit. Manuf. 41, 101966 (2021) [Google Scholar]
  20. C. Rock, C. Ledford, M. Garcia-Avila, et al., The influence of powder reuse on the properties of nickel super alloy ATI 718TM in Laser Powder Bed Fusion additive manufacturing, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 52(2), 676–688 (2021) [CrossRef] [Google Scholar]
  21. R.A. Overfelt, S.I. Bakhtiyarov, R.E. Taylor, Thermophysical properties of A201, A319, and A356 aluminium casting alloys, High Temp. – High Press. 34(4), 401–409 (2002) [CrossRef] [Google Scholar]
  22. Z.Y. Deng, J.M.F. Ferreira, Y. Tanaka, et al., Physicochemical mechanism for the continuous reaction of γ-Al2O3-modified aluminum powder with water, J. Am. Ceram. Soc. 90(5), 1521–1526 (2007) [CrossRef] [Google Scholar]
  23. M. Karimpour, S.R. Eatezadi, S. Hasani, et al., The oxidation mechanism of pure magnesium powder particles: a mathematical approach, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 50(4), 1597–1607 (2019) [CrossRef] [Google Scholar]
  24. M.P. Mallamaci, S. Ramamurthy, C. Barry Carter, Liquid infiltration of MgO and Al2O3 thin films, MRS Proc. 318, 9668–9672 (1993) [CrossRef] [Google Scholar]
  25. K. Riener, S. Oswald, M. Winkler, et al., Influence of storage conditions and reconditioning of AlSi10Mg powder on the quality of parts produced by Laser Powder Bed Fusion (LPBF), Addit. Manuf. 39, 101896 (2021) [Google Scholar]
  26. W. Stopyra, K. Gruber, I. Smolina, et al., Laser Powder Bed Fusion of AA7075 alloy: influence of process parameters on porosity and hot cracking, Addit. Manuf. 35, 101270 (2020) [Google Scholar]
  27. J.A.N. Sukal, D. Palousek, D. Koutny, The effect of recycling powder steel on porosity and surface roughness of SLM parts, MM Sci. J. 2018, 2643–2647 (2018) [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.