Numéro
Matériaux & Techniques
Volume 110, Numéro 6, 2022
Special Issue on ‘Recent advances of the French research on the biodeterioration of materials’, edited by Françoise Feugeas, Bernard Tribollet, Christine Lors, Marc Jeannin and Hervé Gueuné
Numéro d'article 603
Nombre de pages 9
Section Corrosion − Anticorrosion
DOI https://doi.org/10.1051/mattech/2023001
Publié en ligne 7 mars 2023
  1. G. Luciano, A. Brinkmann, S. Mahanty, et al., Development and evaluation of an eco-friendly hybrid epoxy-silicon coating for the corrosion protection of aluminium alloy, Prog. Org. Coat. 110, 78–85 (2017) [CrossRef] [Google Scholar]
  2. M.L. Zheludkevich, J. Tedim, M.G.S. Ferreira, “Smart” coatings for active corrosion protection based on multifunctional micro and nanocontainers, Electrochim. Acta 82, 314–323 (2012) [CrossRef] [Google Scholar]
  3. A. Popoola, O. Olorunniwo, O. Ige, Corrosion resistance through the application of anti-corrosion coatings, Chap. 12, INTECH, 2014 [Google Scholar]
  4. M. Becker, Chromate- free chemical conversion coatings for aluminum alloys, Corros. Rev.. 37(4), 321–342 (2019) [CrossRef] [Google Scholar]
  5. O. Gharbi, S. Thomas, C. Smith, et al., Chromate replacement: what does the future hold, Mater. Degrad. 12, 2 (2018) [Google Scholar]
  6. J.-P. Maréchal, C. Hélio, Challenges for the development of new non-toxic antifouling solutions, Int. J. Mol. Sci. 10, 4623–4637 (2009) [CrossRef] [Google Scholar]
  7. C.M. Magin, S.P. Cooper, A.B. Brennan, et al., Non-toxic anti-fouling strategies, Mater. Today 3, 4 (2010) [Google Scholar]
  8. Z. Ahmad, F. Patel, Development of novel corrosion techniques for green environment, Int. J. Corros. 2012, 8 (2012) [CrossRef] [Google Scholar]
  9. J.E. Gittens, T.J. Smith, R. Suleiman, et al., Current and emerging environmentally-friendly systems for fouling control in the marine environment, Biotechnol. Adv. 31, 1738–1753 (2013) [CrossRef] [Google Scholar]
  10. S.B. Lyon, R. Bingham, D.J. Mills, Advances in corrosion protection by organic coatings: what we know and what we would like to know, Prog. Org. Coat. 102, 2–7 (2017) [CrossRef] [Google Scholar]
  11. J.-T. Qi, T. Hashimoto, J.R. Walton, et al., Trivalent chromium conversion coatings formation in aluminium, Surf. Coat. Technol. 280, 317–329 (2015) [CrossRef] [Google Scholar]
  12. R.B. Mason, S. Clark, M. Klingenberg, et al., Alternatives to dichromate sealer in anodizing operations, Met. Finish. 25–28 (2011) [CrossRef] [Google Scholar]
  13. Y. Quian, Y. Li, S. Jungwirth, et al., The application of anticorrosion coatings for preserving the value of equipments asset in chloride-laden environments. A review, Int. J. Electrochem. Sci. 10, 10756–10780 (2015) [Google Scholar]
  14. B.W.A. Sherar, I.M. Power, P.G. Keech, et al., Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion, Corros. Sci. 53 (2011) [Google Scholar]
  15. K.A. Zarasvand, R. Rai, Microorganims: induction and Inhibition of corrosion in metals, Int. Biodeterior. Biodegrad. 87, 66–74 (2014) [CrossRef] [Google Scholar]
  16. Y. Ma, Y. Zhang, R. Zhang, et al., Microbially influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view, Appl. Microbial. Biotechnol. 104, 515–525 (2020) [CrossRef] [Google Scholar]
  17. Y. Kang, L. Li, S. Li, et al., Temporary Inhibition of the corrosion of AZ31B magnesium alloy by formation of Bacillus subtilis biofilm in seawater, Materials 12, 523 (2019) [CrossRef] [Google Scholar]
  18. N. Kip, J.A. van Veen, Mini review. The dual role of microbes in corrosion, ISME J. 9 (2015) [Google Scholar]
  19. C.M. Kirschner, A.B. Brennan, Bio-inspired antifouling strategies, Annu. Rev. Mater. Res. 42, 211–229 (2012) [CrossRef] [Google Scholar]
  20. C.C.C.R. de Carvalho, Marine biofilms: a successful microbial strategy with economic implications, Front. Mar. Sci. 5, 126 (2018) [CrossRef] [Google Scholar]
  21. M.J.F. Marques, I.N. Alves, R.P. Gonçalves, et al., AA5083 Al alloy corrosion in estuarine environment, in: Eurocorr 2013, Estoril, Portugal, 2013 [Google Scholar]
  22. M.J.F. Marques, T.C. Diamantino, R. Basséguy, Assessment of anticorrosion properties of biomineralized induced coating formed on Al alloy in marine environment. A new nature-inspired approach for corrosion protection, in: Oral presentation at Eurocorr 2020, online, 2020 [Google Scholar]
  23. Y. Shen, Y. Dong, Y. Yang, et al., Study of pitting corrosion inhibition effect on aluminium alloy in seawater by biomineralized film, Bioelectrochemistry 132, 107408 (2020), https://doi.org/10.1016/j.bioelechem.2019.107408 [CrossRef] [Google Scholar]
  24. Y. Gao, D. Feng, M. Moradi, et al., Inhibiting corrosion of aluminium alloy 5083 through Vibrio species biofilm, Corros. Sci., 180, 109188 (2021), https://doi.org/10.1016/j.corsci.2020.109188 [CrossRef] [Google Scholar]
  25. J. Jaume, M.J.F. Marques, M.L. Délia, et al., Surface modification of 5083 aluminium-magnesium induced by marine microorganisms, Corros. Sci., 194, 109934 (2022), https://doi.org/10.1016/j.corsci.2021.109934 [CrossRef] [Google Scholar]
  26. M.J.F. Marques, J. Jaume, T.C. Diamantino, et al., Impact of biomineralization in marine corrosion protection of aluminium alloys, in: Eurocorr 2019, Seville, Spain, 2019 [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.