Numéro
Matériaux & Techniques
Volume 110, Numéro 6, 2022
Special Issue on ‘Recent advances of the French research on the biodeterioration of materials’, edited by Françoise Feugeas, Bernard Tribollet, Christine Lors, Marc Jeannin and Hervé Gueuné
Numéro d'article 605
Nombre de pages 12
DOI https://doi.org/10.1051/mattech/2023005
Publié en ligne 12 avril 2023
  1. M. Roche, L’essentiel sur la protection cathodique 14, CEFRACOR, 2015 [Google Scholar]
  2. A. Barbucci, G. Cerisola, G. Bruzzone, et al., Activation of aluminium anodes by the presence of intermetallic compounds, Electrochim. Acta 42, 2369–2380 (1997), https://doi.org/10.1016/S0013-4686(96)00420-3 [CrossRef] [Google Scholar]
  3. A.H. Roy, Aluminium alloy anode and method of using same in cathodic protection, United States Patent Office 3393, 1968, pp. 138 [Google Scholar]
  4. S. Smith, A. Goolsby, A consumer’s perspective of aluminum anode quality test design, 1996 [Google Scholar]
  5. Windeurope, Wind energy in Europe in 2019. Trends and statistics, 2020, https://windeurope.org/about-wind/statistics/european/wind-energy-in-europe-in-2019/ [Google Scholar]
  6. T. Kirchgeorg, I. Weinberg, M. Hörnig, et al., Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment, Mar. Pollut. Bull. 136, 257–268 (2018) https://doi.org/10.1016/j.marpolbul.2018.08.058 [CrossRef] [Google Scholar]
  7. C. Gagnon, P. Turcotte, Rôle des colloïdes dans la spéciation physique des métaux dans un panache majeur de dispersion d’eaux usées municipales, Rev. Sci. Eau 20, 275–285 (2007) [Google Scholar]
  8. K.J. Farley, F.M.M. Morel, Role of coagulation in sedimentation kinetics, Environ. Sci. Technol. 20, 187–195 (1986) [CrossRef] [Google Scholar]
  9. V. Moulin, Radioprotection 30, 233–246 (1995) [CrossRef] [EDP Sciences] [Google Scholar]
  10. D.J. Hydes, Distribution of aluminium in waters of the North East Atlantic 25 N to 35 N, Geochim. Cosmochim. Acta 47, 967–973 (1983) [CrossRef] [Google Scholar]
  11. D.J. Hydes, G.J. de Lange, H.J.W. de Baar, Dissolved aluminium in the Mediterranean, Geochim. Cosmochim. Acta 52, 2107–2114 (1988) https://doi.org/10.1016/0016-7037(88)90190-1 [CrossRef] [Google Scholar]
  12. J. Kramer, P. Laan, G. Sarthou, et al., Distribution of dissolved aluminium in the high atmospheric input region of the subtropical waters of the North Atlantic Ocean, Mar. Chem. 88, 85–101 (2004) https://doi.org/10.1016/j.marchem.2004.03.009 [CrossRef] [Google Scholar]
  13. H.B. Maring, R.A. Duce, The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater, 1, Aluminum, Earth Planet. Sci. Lett. 84, 381–392 (1987) https://doi.org/10.1016/0012-821X(87)90003-3 [CrossRef] [Google Scholar]
  14. R.W. Gensemer, R.C. Playle, The bioavailability and toxicity of aluminum in aquatic environments, Crit. Rev. Environ. Sci. Technol. 29, 315–450 (1999) https://doi.org/10.1080/10643389991259245 [CrossRef] [Google Scholar]
  15. C.T. Driscoll, W.D. Schecher, The chemistry of aluminum in the environment, Environ. Geochem. Health 12, 28–49 (1990) https://doi.org/10.1007/BF01734046 [CrossRef] [Google Scholar]
  16. M.A. Trenfield, J.W. van Dam, A.J. Harford, et al., Aluminium, gallium, and molybdenum toxicity to the tropical marine microalga Isochrysis galbana: metal toxicity to the tropical marine alga I. galbana, Environ. Toxicol. Chem. 34, 1833–1840 (2015) https://doi.org/10.1002/etc.2996 [CrossRef] [Google Scholar]
  17. J.F. Mc Carthy, C. Degueldre, Sampling and characterisation of colloids and particles in groundwater for studying their role in contaminant transport, in: J. Buffle, H.P. van Leuwen, eds., Environmental particles Boca Raton, Lewis Publishers, V 2, 1993, pp. 247–315 [Google Scholar]
  18. C. Exley., E.R. House, Aluminium in the human brain, Monatsh. Chem. 142, 357–363 (2011) https://doi.org/10.1007/s00706-010-0417-y [CrossRef] [Google Scholar]
  19. L.A. Golding, B.M. Angel, G.E. Batley, et al., Derivation of a water quality guideline for aluminium in marine waters: derivation of a marine water quality guideline for aluminium, Environ. Toxicol. Chem. 34, 141–151 (2015) [CrossRef] [Google Scholar]
  20. T. Jickells, Atmospheric inputs of metals and nutrients to the oceans: their magnitude and effects, Mar. Chem. 48, 199–214 (1995) https://doi.org/10.1016/0304-4203(95)92784-P [CrossRef] [Google Scholar]
  21. C. Hogstrand., C.M. Wood, A.P. Farrell, et al., Homeostasis and toxicology of essential metals, Fish Physiol. Zinc 136–201 (2012) [Google Scholar]
  22. M.J. Salgueiro, M. Zubillaga, A. Lysionek, et al., Zinc as an essential micronutrient: a review, Nutr. Res. 20, 737–755 (2000) https://doi.org/10.1016/S0271-5317(00)00163-9 [CrossRef] [Google Scholar]
  23. European Communities, Technical Guidance Document in support of Commission Directive 93/67/EEC367 on risk assessment for new notified substances and Commission Regulation (EC) No 1488/94 on risk assessment for existing substances and Commission Directive (EC) 98/8 on biocides, 2nd ed., Luxembourg, European Commission, 2003, 369 p. [Google Scholar]
  24. P.S. Rainbow, D.J.H. Phillips, Cosmopolitan biomonitors of trace metals, Mar. Pollut. Bull. 26, 593–601 (1993) https://doi.org/10.1016/0025-326X(93)90497-8 [CrossRef] [Google Scholar]
  25. C. Caplat, E. Mottin, L. Jean-Marc, et al., Impact of a sacrificial anode as assessed by zinc accumulation in different organs of the oyster Crassostrea gigas: results from long- and short-term laboratory tests, Arch. Environ. Contam. Toxicol. 62, 638–649 (2012) https://doi.org/10.1007/s00244-011-9737-0 [CrossRef] [Google Scholar]
  26. C. Caplat, R. Oral, M.-L. Mahaut, et al., Comparative toxicities of aluminum and zinc from sacrificial anodes or from sulfate salt in sea urchin embryos and sperm, Ecotoxicol. Environ. Saf. 73, 1138–1143 (2010) https://doi.org/10.1016/j.ecoenv.2010.06.024 [CrossRef] [Google Scholar]
  27. A. Mao, M.-L. Mahaut, S. Pineau, et al., Assessment of sacrificial anode impact by aluminum accumulation in mussel Mytilus edulis: a large-scale laboratory test, Mar. Pollut. Bull. 62, 2707–2713 (2011) https://doi.org/10.1016/j.marpolbul.2011.09.017 [CrossRef] [Google Scholar]
  28. E. Mottin, C. Caplat, T. Latire, et al., Effect of zinc sacrificial anode degradation on the defence system of the Pacific oyster, Crassostrea gigas: chronic and acute exposures, Mar. Pollut. Bull. 64, 1911–1920 (2012) https://doi.org/10.1016/j.marpolbul.2012.06.017 [CrossRef] [Google Scholar]
  29. J. Tria, E.C.V. Butler, P.R. Haddad, et al., Determination of aluminium in natural water samples, Anal. Chim. Acta 588, 153–165 (2007) https://doi.org/10.1016/j.aca.2007.02.048 [CrossRef] [Google Scholar]
  30. B.M. Angel, S.C. Apte, G.E. Batley, et al., Geochemical controls on aluminium concentrations in coastal waters, Environ. Chem. 13, 111 (2015) [Google Scholar]
  31. S.A. Abdel Ghani, Trace metals in seawater, sediments and some fish species from Marsa Matrouh Beaches in north-western Mediterranean coast, Egypt, Egypt. J. Aquat. Res. 41, 145–154 (2015) https://doi.org/10.1016/j.ejar.2015.02.006 [CrossRef] [Google Scholar]
  32. J. Valdés, D. Román, L. Rivera, et al., Metal contents in coastal waters of San Jorge Bay, Antofagasta, northern Chile: a base line for establishing seawater quality guidelines, Environ. Monit. Assess. 183, 231–242 (2011) https://doi.org/10.1007/s10661-011-1917-x [CrossRef] [Google Scholar]
  33. S. Jahan, V. Strezov, Water quality assessment of Australian ports using water quality evaluation indices, PLoS ONE 12, e0189284 (2017). [CrossRef] [Google Scholar]
  34. K.W. Bruland, K.J. Orians, J.P. Cowen, Reactive trace metals in the stratified central North Pacific, Geochim. Cosmochim. Acta 58, 3171–3182 (1994) https://doi.org/10.1016/0016-7037(94)90044-2 [CrossRef] [Google Scholar]
  35. C. Pohl, G. Kattner, M. Schulz-Baldes, Cadmium, copper, lead and zinc on transects through Arctic and Eastern Atlantic surface and deep waters, J. Mar. Syst. 4, 17–29 (1993) https://doi.org/10.1016/0924-7963(93)90017-G [CrossRef] [Google Scholar]
  36. P. Bird, S.D.W. Comber, M.J. Gardner, et al., Zinc inputs to coastal waters from sacrificial anodes, Sci. Total Environ. 181, 257–264 (1996) https://doi.org/10.1016/0048-9697(95)05025-6 [CrossRef] [Google Scholar]
  37. R.J. Law, M.J. Waldock, C.R. Allchin, et al., Contaminants in seawater around England and Wales: results from monitoring surveys, 1990–1992, Mar. Pollut. Bull. 28, 668–675 (1994) https://doi.org/10.1016/0025-326X(94)90302-6 [CrossRef] [Google Scholar]
  38. J.W. Morse, B.J. Presley, R.J. Taylor, et al., Trace metal chemistry of Galveston Bay: water, sediments and biota, Mar. Environ. Res. 36, 1–37 (1993) https://doi.org/10.1016/0141-1136(93)90087-G [CrossRef] [Google Scholar]
  39. D. Sheahan, S. Brooks, A. Raffo, et al., A review of the contaminant status of SEA 8 covering the Western Approaches, Celtic Sea and English Channel, 2007 [Google Scholar]
  40. J.H. Trefry, R.P. Trocine, K.L. Naito, et al., Assessing the potential for enhanced bio accumulation of heavy metals from produced water discharges to the Gulf of Mexico, in: Produced water 2, Springer, 1996, pp. 339–354 [CrossRef] [Google Scholar]
  41. INERIS, Zinc et ses principaux dérivés, 2015 [Google Scholar]
  42. L. Wan, N. Wang, Q. Li, et al., Distribution of dissolved metals in seawater of Jinzhou Bay, China, Environ. Toxicol. Chem. 27, 43 (2008) https://doi.org/10.1897/07-155.1 [CrossRef] [Google Scholar]
  43. C. Barcellos, Geodinâmica de cádmio e zinco na Baia de Sepetiba, Rio de Janeiro, Brazil, University Federal Fluminense, 1995 [Google Scholar]
  44. C.-B. Jeong, H.-M. Kang, M.-C. Lee, et al., Effects of polluted seawater on oxidative stress, mortality, and reproductive parameters in the marine rotifer Brachionus koreanus and the marine copepod Tigriopus japonicus, Aquat. Toxicol. 208, 39–46 (2019) https://doi.org/10.1016/j.aquatox.2018.12.019 [CrossRef] [Google Scholar]
  45. Jr, J.K. Stanley, R.H. Byrne, Inorganic complexation of zinc (II) in seawater, Geochim. Cosmochim. Acta 54, 753–760 (1990) [CrossRef] [Google Scholar]
  46. J. Deborde, P. Refait, P. Bustamante, et al., Impact of galvanic anode dissolution on metal trace element concentrations in marine waters, Water Air Soil Pollut. 226, 1–14 (2015) [CrossRef] [Google Scholar]
  47. European Chemicals Agency, Guidance on information requirements and chemical safety, 2016 [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.