Numéro
Matériaux & Techniques
Volume 109, Numéro 3-4, 2021
Special Issue on ‘Overview, state of the art, recent developments and future trends regarding Hydrogen route for a green steel making process’, edited by Ismael Matino and Valentina Colla
Numéro d'article 305
Nombre de pages 9
Section Modélisation et simulation : procédés d’élaboration et de traitement / Modelling and simulation: materials processing
DOI https://doi.org/10.1051/mattech/2022002
Publié en ligne 18 février 2022
  1. World Steel Association, Steel Statistical Yearbook 2019, World Steel Association, 2019 [Google Scholar]
  2. P. Dahlmann, H.B. Lüngen, M. Sprecher, Steel roadmap for low carbon Europe 2050, in: Technical results, in European steel technology and application days, Düsseldorf, 2019 [Google Scholar]
  3. EUROFER, European steel in figures 2020, EUROFER, 2020 [Google Scholar]
  4. M. Wörtler, F. Schuler, N. Voigt, et al., Steel’s contribution to a low-carbon Europe 2050, The Boston Consulting Group, Steel Instiute VDEh, 2013 [Google Scholar]
  5. European Commission, The European Green Deal, European Commission, Brussels, 2019 [Google Scholar]
  6. A. Ito, A. Lecat, The future of steelmaking − How the European steel industry can achieve carbon neutrality, Roland Berger, 2020 [Google Scholar]
  7. EUROFER, A steel roadmap for a low carbon Europe 2050, EUROFER, 2013 [Google Scholar]
  8. EUROFER, Low carbon roadmap. Pathways to a CO2-neutral European steel industry, EUROFER, Brussels, 2019 [Google Scholar]
  9. M. Draxler, Carbon direct avoidance, in: LowCarbonFuture Final Webinar, 2020 [Google Scholar]
  10. K. Rechberger, A. Spanlang, A. Sasiain Conde, H. Wolfmeir, C. Harris, Green hydrogen-based direct reduction for low carbon steelmaking, Steel Res. Int. 91(11) (2020) [Google Scholar]
  11. V. Vogl, M. Åhman, Assessment of hydrogen direct reduction for fossil-free steelmaking, J. Clean. Prod. 203, 736–745 (2018) [CrossRef] [Google Scholar]
  12. M. Hölling, M. Weng, S. Gellert, Bewertung der Herstellung von Eisenschwamm unter Verwendung von Wasserstoff, Stahl und Eisen, 137, 47–53 (2017) [Google Scholar]
  13. J. Ripke, J. Kopfle, MIDREX H2: ultimate low CO2 ironmaking and its place in the new hydrogen economy, in: Direct from Midrex, 3rd Quarter 2017, Midrex, 2017, pp. 7–12 [Google Scholar]
  14. N. Müller, G. Herz, A. Redenius, V. Hille, E. Reichelt, M. Jahn, Assessment of the transition from coal-based steelmaking to hydrogen-based steelmaking, METEC & 4th ESTAD, Düsseldorf, 2019 [Google Scholar]
  15. A. Zaccara, A. Petrucciani, I. Matino, et al., Renewable hydrogen production processes for the off-gas valorization in integrated steelworks through hydrogen intensified methane and methanol syntheses, Metals 10(11), 1–24 (2020) [Google Scholar]
  16. H2FUTURE Project, https://www.h2future-project.eu/ [Online] [Google Scholar]
  17. M. Weigel, Ganzheitliche Bewertung zukünftig verfügbarer primärer Stahlherstellungsverfahren. Einschätzung der möglichen Rolle von Wasserstoff als Reduktionsmittel, Wuppertal, 2014 [Google Scholar]
  18. N. Pardo, J. Moya, K. Vatopoulos, Prospective scenarios on energy efficiency and CO2 emissions in the EU Iron & Steel Industry, European Commission, 2012 [Google Scholar]
  19. V. Chevrier, Slow road to recovery for DR-grade pellets, in: Direct from Midrex. 4th quarter2019, Midrex, 2019 [Google Scholar]
  20. IEAGHG, Iron and steel CCS study (techno-economics integrated steel mill), IEAGHG, 2013 [Google Scholar]
  21. EUROSTAT, https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_205&lang=en [Online] [Google Scholar]
  22. EUROSTAT, https://ec.europa.eu/eurostat/databrowser/bookmark/bed343e6-baa2-4ce6-b2a8-fd3d865715be?lang=en [Online] [Google Scholar]
  23. EEX, https://www.eex.com/en/markets/environmental-markets/emissions-auctions [Online] [Google Scholar]
  24. International Energy Agency, World Energy Outlook 2018, International Energy Agency, 2018 [Google Scholar]
  25. J. Mayer, G. Bachner, K.W. Steininger, Macroeconomic implications of switching to process-emission-free iron and steel production in Europe, J. Clean. Prod. 1517–1533 (2019) [CrossRef] [Google Scholar]
  26. J. Janssen, Hydrogen cost analysis, H2FUTURE, 2019 [Google Scholar]
  27. M. Weeda, WP9 impact & exploitation, in: 7th Steering Committee H2FUTURE, Linz, 2018 [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.