Matériaux & Techniques
Volume 108, Number 5-6, 2020
Materials and Society: transitions in society, materials and energy
Article Number 510
Number of page(s) 12
Section Environnement - recyclage / Environment - recycling
Published online 26 April 2021
  1. World Steel Association, Water management in the steel industry, position paper, World Steel Association 2015, ISBN 978-2-930069-81-4 [Google Scholar]
  2. Y. Gu, J. Xu, A.A. Keller, et al., Calculation of water footprint of the iron and steel industry: a case study in Eastern China, J. Clean. Prod. 92, 274–281 (2015) [CrossRef] [Google Scholar]
  3. S.R. Kalvani, A.H. Sharaai, L.A. Manaf, A.H. Hamidian, Review On Water Footprint Method In Different Sectors, Int. J. Adv. Sci. Technol. 29, 1778–1785 (2020) [Google Scholar]
  4. G.F. Porzio, E. Alcamisi, I. Matino, V. Colla, An integrated approach for industrial water systems optimal design, in: Technical Proceedings of the 2014 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2014, Vol. 3, 2014, pp. 529–532 [Google Scholar]
  5. S. Roudier, L.D. Sancho, R. Remus, M. Aguadomonsonet, Best Available Techniques (BAT) reference document for iron and steel production. Industrial Emissions Directive 2010/75/EU: Integrated Pollution Prevention and Control, Institute for Prospective and Technological Studies, Joint Research Centre, European Commission, 2013 [Google Scholar]
  6. T.A. Branca, B. Fornai, V. Colla, M.M. Murri, E. Streppa, A.J. Schröder, The challenge of digitalization in the steel sector, Metals 10, 2 (2020) [Google Scholar]
  7. J. Wang, S. Li, G. Xiong, D. Cang, Application of digital technologies about water network in steel industry, Resour. Conserv. Recycl. 55(8), 755–759 (2011) [CrossRef] [Google Scholar]
  8. C. Deng, W. Jiang, W. Zhou, X. Feng, New superstructure-based optimization of property-based industrial water system, J. Clean. Prod. 189, 878–886 (2018) [CrossRef] [Google Scholar]
  9. I. Matino, E. Alcamisi, G.F. Porzio, V. Colla, Application of Unconventional Techniques for Evaluation and Monitoring of Physico-Chemical Properties of Water Streams, Int. J. Simul. Syst. Sci. Technol. 16, 1 (2015) [Google Scholar]
  10. E. Alcamisi, I. Matino, M. Vannocci, V. Colla, Simplified Ionic Representation of Industrial Water Streams, in: 8th European Modeling Symposium on Mathematical Modeling and Computer simulation EMS2014, Pisa, Italy, pp. 286–290, (2014) [Google Scholar]
  11. I.A. Katsoyuannis, P. Gkotsis, M. Castellana, F. Cartechini, A.I. Zouboulis, Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent, J. Environ. Manag. 190, 132–139 (2017) [CrossRef] [Google Scholar]
  12. B. Das, B. Chakrabarty, P. Barkakati, Preparation and Characterization of novel Ceramic Membranes for Micro-Filtration Applications, Ceram. Int. 43, 13 (2016) [Google Scholar]
  13. W. Liu, N. Canfield, Development of thin porous metal sheet as micro-filtration membrane and inorganic membrane support, J. Membr. Sci. 409(10), 113–126 (2012) [CrossRef] [Google Scholar]
  14. C. Dong, G. He, H. Li, Y. Han, Y. Deng, Antifouling enhancement of poly(vinylidene fluoride) microfiltration membrane by adding Mg(OH)2 nanoparticles, J. Membr. Sci. 387-388, 40–47 (2012) [CrossRef] [Google Scholar]
  15. J. Liu, J. Tian, Z. Wang, D. Zhao, F. Jia, B. Dong, Mechanism analysis of powdered activated carbon controlling microfiltration membrane fouling in surface water treatment, Coll. Surf. A: Phydicochem. Eng. Aspects 517, 45–51 (2017) [CrossRef] [Google Scholar]
  16. J. Liu, B. Dong, B. Cao, D. Zhao, Z. Wang, Microfiltration process for surface water treatment: irreversible fouling identification and chemical cleaning, RSC Adv. 6, 115 (2016) [Google Scholar]
  17. V. Colla, I. Matino, T.A. Branca, B. Fornai, L. Romaniello, F. Rosito, Efficient Use of Water Resources in the Steel Industry, Water 9(11), 874 (2017) [CrossRef] [Google Scholar]
  18. I. Matino, V. Colla, L. Romaniello, F. Rosito, L. Portulano, Simulation techniques for an efficient use of resources: An overview for the steelmaking field, in: World Congress on Sustainable Technologies (WCST), IEEE, 2015, pp. 48–54 [Google Scholar]
  19. I. Matino, B. Fornai, V. Colla, L. Romaniello, F. Rosito, Water Process Integration: Assessment of an Ultrafiltration and Reverse Osmosis Based Treatment to Regenerate Coke-Making Area Wastewater, in: Proceedings of European Steel Technology and Application Days (ESTAD 2017), 2017 [Google Scholar]
  20. V. Colla, T.A. Branca, F. Rosito, C. Lucca, B.P. Vivas, V.M. Delmiro, Sustainable reverse osmosis application for wastewater treatment in the steel industry, J. Clean. Prod. 130, 103–115 (2016) [CrossRef] [Google Scholar]
  21. I. Matino, V. Colla, F. Cirilli, et al., Environmental impact evaluation for effective resource management in EAF steelmaking, Metall. Ital. 10, 48–58 (2017) [Google Scholar]
  22. Eurofer, Susteel – Sustainability for steel construction products mark – Definition of the KPI system, (2012) [Google Scholar]
  23. J.M. Fernández, F.R. Pérez, M.G. Huerta, A.S. Vizán, Methodology for the selection of key performance indicators for sustainable steel production through an intelligent control system use, Project Manag. Eng. Res. 89–102 (2014) [Google Scholar]
  24. V. Colla, I. Matino, F. Cirilli, et al., Improving energy and resource efficiency of electric steelmaking through simulation tools and process data analyses, Materiaux & Techniques 104, 6–7 (2016) [Google Scholar]
  25. V. Colla, I. Matino, S. Dettori, et al., Assessing the efficiency of the off-gas network management in integrated steelworks, Materiaux & Techniques 107, 1 (2019) [CrossRef] [Google Scholar]
  26. I. Matino, V. Colla, V. Colucci, P. Lamia, S. Baragiola, C. Di Cecca, Improving sustainability of electric steelworks through process simulations, Chem. Eng. Trans. 52, 763–768 (2016) [Google Scholar]
  27. E. Alcamisi, I. Matino, V. Colla, A. Maddaloni, L. Romaniello, F. Rosito, Process Integration Solutions for Water Networks in Integrated Steel Making Plants, Chem. Eng. Trans. 45, 37–42 (2015) [Google Scholar]
  28. J.J. Klemeš, P.S. Varbanov, S.R.W. Alwi, Z.A. Manan, Sustainable Process Integration and Intensification: Saving Energy, Water and Resources, Walter de Gruyter GmbH & Co KG, 2018 [Google Scholar]
  29. R.M. Smith, Chemical Process: Design and Integration, John Wiley & Sons, Ltd., Chichester, West Sussex, United Kingdom, 2005 [Google Scholar]
  30. UNEP’s Finance Industry Initiatives, Industry as a Partner for Sustainable Development. Finance and Insurance, Geneva, Switzerland, 2002 [Google Scholar]
  31. R. Wolters, M. Hubrich, M. Kozariszczuk, P. Mund, J. Kamp, M. Wessling, Treatment of Cooling and Process Water in the Steel Industry, Chem.-Ingenieur-Tech. 91(10), 1445–1453 (2019) [CrossRef] [Google Scholar]
  32. Y.P. Luzin, V. Kazyuta, N. Mozharenko, A. Zen’kovich, Removal of cyanides from blast-furnace gas and wastewater, Steel Transl. 42(7), 606–610 (2012) [CrossRef] [Google Scholar]
  33. I. Matino, V. Colla, Modelling of an Ozonation Process for Cyanide Removal from Blast Furnace Gas-Washing Water and Analyses of Process Behaviour in Different Scenarios, Chem. Eng. Trans. 61, 1447–1452 (2017) [Google Scholar]
  34. I. Matino, V. Colla, T.A. Branca, Extension of pilot tests of cyanide elimination by ozone from blast furnace gas washing water through Aspen Plus® based model, Front. Chem. Sci. Eng. 12, 718–730 (2018) [Google Scholar]
  35. V. Colla, F. Cirilli, B. Kleimt, et al., Monitoring the environmental and energy impacts of electric arc furnace steelmaking, Matériaux & Techniques 104, 102 (2016) [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.