Free Access
Issue
Matériaux & Techniques
Volume 108, Number 1, 2020
Article Number 102
Number of page(s) 5
Section Matériaux organiques / Organic materials
DOI https://doi.org/10.1051/mattech/2020012
Published online 05 May 2020
  1. NF EN 14279, Lamibois (LVL) – Définitions, classification et spécifications, 2009 [Google Scholar]
  2. NF EN 14374, Structures en bois – LVL (Lamibois) – Exigences, 2005 [Google Scholar]
  3. D. Masson, M.C. Trouy-Triboulot, Matériaux dérivés du bois, Techniques de l’ingénieur C-928, 17 (2003) [Google Scholar]
  4. E.L. Schaffer, R.W. Jokerst, R.C. Moody, Feasibility of producing a high-yield laminated structural product: general summary, USDA Forest Service Research Paper FPL 175, Forest Products Laboratory, Madison, 1972 [Google Scholar]
  5. W.L. Hoover, J.M. Ringe, C.A. Eckelman, J.A. Youngquist, Material design factors for hardwood laminated-veneer-lumber, For. Prod. J. 37(9), 15–23 (1987) [Google Scholar]
  6. Y. Kilic, M. Colak, E. Baysal, E. Burdurlu, An investigation of some physical and mechanical properties of laminated veneer lumber manufactured from black alder (Alnus glutinosa) glued with polyvinyl acetate and polyurethane adhesives, For. Prod. J. 56, 56–59 (2006), https://doi.org/10.1016/j.buildenv.2005.05.008 [Google Scholar]
  7. G. Bortoletto Junior, Quality evaluation of Pinus merkusii wood for veneer production (in Portuguese), Sci. For. 36, 95–103 (2008) [Google Scholar]
  8. P.S. H’ng, M.T. Paridah, K.L. Chin, Bending properties of LVL produced from Keruing (Dipterocarpus sp) reinforced with low-density wood species, Asian J. Sci. Res. 3, 118–125 (2010), https://doi.org/10.3923/ajsr.2010.118.125 [CrossRef] [Google Scholar]
  9. R.R. De Melo, C.H.S. Del Menezzi, Influence of veneer thickness on the properties of LVL from Paricá (Schizolobium amazonicum) plantation trees, Eur. J. Wood Prod. 72, 191–198 (2014), https://doi.org/10.1007/s00107-013-0770-8 [CrossRef] [Google Scholar]
  10. I. Rahayu, L. Denaud, R. Marchal, W. Darmawan, Ten new poplar cultivars provide laminated veneer lumber for structural application, Ann. For. Sci. 72, 705–715 (2015), https://doi.org/10.1007/s13595-014-0422-0 [CrossRef] [Google Scholar]
  11. C.Y.C. Purba, G. Pot, J. Viguier, J. Ruelle, L.E. Denaud, The influence of veneer thickness and knot proportion on the mechanical properties of laminated veneer lumber (LVL) made from secondary quality hardwood, Eur. J. Wood Wood Prod. 77(3), 393–404 (2019), https://doi.org/10.1007/s00107-019-01400-3 [CrossRef] [Google Scholar]
  12. A. Daoui, C. Descamps, R. Marchal, A. Zerizer, Influence of veneer quality on beech LVL mechanical properties, Maderas Cienc. Tecnol. 13, 69–83 (2011), https://doi.org/10.4067/S0718-221X2011000100007 [CrossRef] [Google Scholar]
  13. J.L.M. Matos, Studies on the manufacture of Pinus taeda LVLs (in Portuguese), Dissertation, PhD in Forest Science, Parana Federal University, 1997 [Google Scholar]
  14. R.C. Moody, Tensile strength of lumber laminated from 1/8-inch-thick veneers, Res. Pap. FPL 181, 28 (1972) [Google Scholar]
  15. J.A. Youngquist, B.S. Bryant, Production and marketing feasibility of parallel-laminated veneer products, For. Prod. J. 29(8), 45–48 (1979) [Google Scholar]
  16. J. Youngquist, T. Laufenberg, B. Bryant, End jointing of laminated veneer lumber for structural use, For. Prod. J. 34, 25–32 (1984) [Google Scholar]
  17. T. Ebihara, Shear properties of laminated-veneer lumber (LVL), J. Jpn. Wood Res. Soc. 27, 788–794 (1981) [Google Scholar]
  18. G. Pot, L.E. Denaud, R. Collet, Numerical study of the influence of veneer lathe checks on the elastic mechanical properties of laminated veneer lumber (LVL) made of beech, Holzforschung 69, 337–345 (2015), https://doi.org/10.1515/hf-2014-0011 [CrossRef] [Google Scholar]
  19. L. Denaud, L. Bléron, A. Ratle, R. Marchal, Online control of wood peeling process: acoustical and vibratory measurements of lathe checks frequency, Ann. For. Sci. 64, 569–575 (2007), https://doi.org/10.1051/forest:2007034 [CrossRef] [EDP Sciences] [Google Scholar]
  20. B. Pałubicki, R. Marchal, J.C. Butaud, L.E. Denaud, L. Bleron, R. Collet, A method of lathe checks measurement, SMOF device and its software, Eur. J. Wood Prod. 68, 151–159 (2010), https://doi.org/10.1007/s00107-009-0360-y [CrossRef] [Google Scholar]
  21. R. Marchal, Valorisation par tranchage et déroulage des bois de chênes méditerranéens (Quercus ilex, Quercus pubescens, Quercus suber), Thèse de Doctorat de l’INPL, Nancy, 1989, 294 p [Google Scholar]
  22. A. Bayatkashkoli, M. Shamsian, M. Mansourfard, The effect of number of joints on bending properties of laminated lumber made from poplar (Populus nigra), For. Stud. China, 14(3), 246–250 (2012), https://doi.org/I10.1007/s11632-012-0313-0 [CrossRef] [Google Scholar]
  23. J. Deng, H. Li, D. Zhang, F. Chen, G. Wang, H. Cheng, The effect of joint form and parameter values on mechanical properties of bamboo-bundle laminated veneer lumber (BLVL), BioResour. 9(4), 6765–6777 (2014), https://doi.org/10.15376/biores.9.4.6765-6777 [Google Scholar]
  24. Y.A. Liu, Study on mechanical properties of Larch with finger-joint, Masters thesis, Beijing Forestry University, Beijing, 2005 [Google Scholar]
  25. A. Özçifçi, Effects of scarf joints on bending strength and modulus of elasticity to laminated veneer lumber (LVL), Build. Environ. 42(3), 1510–1514 (2007), https://doi.org/10.1016/j.buildenv.2005.12.024 [CrossRef] [Google Scholar]
  26. D. Zhang, G. Wang, W. Ren, Effect of different veneer-joint forms and allocations on mechanical properties of bamboo-bundle laminated veneer lumber, BioResour. 9(2), 2689–2695 (2014), https://doi.org/10.15376/biores.9.2.2689-2695 [Google Scholar]
  27. M.C. Yeh, Y.L. Lin, Finger joint performance of structural laminated bamboo member, J. Wood Sci. 58(2), 120–127 (2012), https://doi.org/10.1007/s10086-011-1233-7 [CrossRef] [Google Scholar]
  28. C. Bustos, R. Beauregard, M. Mohammad, R.E. Hernández, Effect of joint geometry on the performance of structural finger-jointed black spruce wood, in: S. Aicher, H.-W. Reinhardt (Eds.), Actes du colloque international RILEM sur des joints en structures du bois, PRO 22, Sttutgart, All., 2001, pp. 503–512 [Google Scholar]
  29. F. Mothe, R. Marchal, V. Bucur, Mechanical characterisation of Laminated Veneer Lumber (LVL) from European oak wood by acoustival methods, in: Proceedings of the First European Symposium on Nondestructive Testing of Wood, Sopron Hungary, 21–23 September, 1994, pp. 197–206 [Google Scholar]
  30. E. Burdurlu, M. Kilic, A. Cemil Ilce, O. Uzunkavak, The effects of ply organization and loading direction on bending strength and modulus of elasticity in laminated veneer lumber (LVL) obtained from beech (Fagus orientalis L.) and lombardy poplar (Populus nigra L.), Constr. Build. Mater. 21, 1720–1725 (2007), https://doi.org/10.1016/j.conbuildmat.2005.05.002 [CrossRef] [Google Scholar]
  31. B.C. Bal, I. Bektas, The effects of some factors on the impact bending strength of laminated veneer lumber, BioResour. 7(4), 5855–5863 (2012), https://doi.org/10.15376/biores.7.4.5855-5863 [Google Scholar]
  32. J.D. Lanvin, F. Simon, D. Reuling, R. Marchal, Oak and LVL Plywood: a new way to technical panels, in: Second International Symposium Veneer Processing and Products (ISVPP2), 9–10 May, 2006, Vancouver, pp. 219–228 [Google Scholar]
  33. M. Svoradova, L. Bléron, R. Marchal, G. Giacomo, F. Cottin, Influence of wood extractibles on the gluing quality in oak LVL, in: 3rd International Conference Wood Science and Engineering (ICWSE-3), November 20–22th, 2002, Brasov, Romania, pp. 370–378 [Google Scholar]
  34. S.R. Shukla, D. Pascal Kamdem, Properties of laboratory made yellow poplar (Liriodendron tulipifera) laminated veneer lumber: effect of the adhesives, Eur. J. Wood Prod. 67, 397–405 (2009), https://doi.org/10.1007/s00107-009-0333-1 [CrossRef] [Google Scholar]
  35. R.R. De Melo, C.H.S. Del Menezzi, Influence of adhesive type on the properties of LVL made from Paricá (Schizolobium amazonicum Huber ex. Ducke) plantation trees, Drvna Industrija 66(3), 205–212 (2015), https://doi.org/10.5552/drind.2015.1438 [CrossRef] [Google Scholar]
  36. R. Marchal, F. Mothe, L. Denaud, B. Thibaut, L. Bleron, Cutting forces in wood machining-basics and applications in industrial processes, Holzforschung 63, 157–167 (2009), https://doi.org/10.1515/HF.2009.014 [CrossRef] [Google Scholar]
  37. P. Koch, Super-strength beams laminated from rotary-cut southern pine veneer, For. Prod. J. 17(6), 42–48 (1966), https://www.fs.usda.gov/treesearch/pubs/24088 [Google Scholar]
  38. S.R. Shukla, D.P. Kamdem, Properties of laminated veneer lumber (LVL) made with low density hardwood species: effect of the pressure duration, Holz Roh Werkst 66, 119–127 (2008), https://doi.org/10.1007/s00107-007-0209-1 [CrossRef] [Google Scholar]
  39. R. Kurt, M. Cil, K. Aslan, V. Cavus, Effect of pressure duration on physical, mechanical, and combustibility characteristics of laminated veneer lumber (LVL) made with hybrid poplar clones, BioResour. 6(4), 4886–4894 (2011), https://doi.org/10.15376/biores.6.4.4886-4894 [Google Scholar]
  40. H. Pangh, K. Doosthoseini, Optimization of press time and properties of laminated veneer lumber panels by means of a punching technique, BioResour. 12(2), 2254–2268 (2017), https://doi.org/10.15376/biores.12.2.2254-2268 [CrossRef] [Google Scholar]
  41. X. Wang, R.J. Ross, B.K. Brashaw, S.A. Verney, J.W. Forsman, J.R. Erickson, Flexural properties of LVL manufactured from ultrasonically rated red maple veneer, FPL Res. Note FPL-RN-0288, United State Department of Agriculture, USA, 2003, https://www.fs.usda.gov/treesearch/pubs/6339 [Google Scholar]
  42. R.L. McGavin, H. Bailleres, M. Hamilton, D. Blackburn, M. Vega, B. Ozarska, Variation in rotary veneer recovery from Australian plantation Eucalyptus globulus and Eucalyptus nitens, BioResour. 10, 313–329 (2014), https://doi.org/10.15376 [CrossRef] [Google Scholar]
  43. F. De Souza, C.H.S. Del Menezzi, G. Bortoletto Júnio, Material properties and non-destructive evaluation of laminated veneer lumber (LVL) made from Pinus oocarpa and P. kesiya, Eur. J. Wood Wood Prod. 69(2), 183–192 (2011), http://dx.doi.org/10.1007/s00107-010-0415-0 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.