Free Access
Issue
Matériaux & Techniques
Volume 107, Number 6, 2019
Article Number 603
Number of page(s) 9
Section Sélection des matériaux et des procédés / Materials and processes selection
DOI https://doi.org/10.1051/mattech/2020008
Published online 24 March 2020
  1. Jagadish, S. Bhowmik, A. Ray, Prediction and optimization of process parameters of green composites in AWJM process using response surface methodology, Int. J. Adv. Manuf. Technol. 87, 1359 (2016) [CrossRef] [Google Scholar]
  2. P.A. Dumbhare, S. Dubey, Y.V. Deshpande, A.B. Andhare, P.S. Barve, Modelling and multi-objective optimization of surface roughness and kerf taper angle in abrasive water jet machining of steel, J. Braz. Soc. Mech. Sci. Eng. 40, 259 (2018) [CrossRef] [Google Scholar]
  3. N.S. Tirumala, D. Gajjela, R. Das, ANN and RSM approach for modelling and multi objective optimization of abrasive water jet machining process, Decis. Sci. Lett. 7, 535 (2018) [Google Scholar]
  4. B.C. Routara, B.K. Nanda, A.K. Sahoo, D.N. Thatoi, B.B. Nayak, Optimisation of multiple performance characteristics in abrasive jet machining using grey relational analysis, Int. J. Manuf. Technol. Manag. 24, 4 (2011) [CrossRef] [Google Scholar]
  5. D.V. Srikanth, M.S. Rao, Application of taguchi & response surface methodology in optimization for machining of ceramics with abrasive jet machining, Mater. Today: Proc. 2, 3308 (2015) [CrossRef] [Google Scholar]
  6. E.S. Abdelnasser, A. Elkaseer, A. Nassef, Abrasive jet machining of glass: Experimental investigation with artificial neural network modelling and genetic algorithm optimization, J. Cog. Eng. 3, 1 (2016) [Google Scholar]
  7. A. Nassef, A. Elkaseer, E.S. Abdelnasser, M. Negm, J.A. Qudeiri, Abrasive jet drilling of glass sheets: Effect and optimisation of process parameters on kerf taper, Adv. Mech. Eng. 10, 1 (2018) [CrossRef] [Google Scholar]
  8. B.K. Nanda, A. Mishra, D. Dhupal, Fluidized bed abrasive jet machining (FB-AJM) of K-99 alumina ceramic using SiC abrasives, Int. J. Adv. Manuf. Technol. 90, 3655 (2017) [CrossRef] [Google Scholar]
  9. R. Shukla, D. Singh, Experimentation investigation of abrasive water jet machining parameters using taguchi and evolutionary optimization techniques, Swarm Evolut. Comput. 32, 167 (2017) [CrossRef] [Google Scholar]
  10. B.K. Nanda, A. Mishra, D. Dhupal, S. Swain, Experimentation and optimization of process parameters of abrasive jet drilling by surface response method with desirability based PSO, Mater. Today: Proc. 4, 7426 (2014) [CrossRef] [Google Scholar]
  11. B.K. Nanda, D. Dhupal, Experimental investigation of GFRP composite using fluidized bed abrasive jet machining setup, Ciencia e Tecnica Vitivinicola 32, 348 (2017) [Google Scholar]
  12. N. Jagannatha, S.H. Somashekhar, K. Sadashivappa, K.V. Arun, Machining of soda lime glass using abrasive hot air jet: An experimental study, Mach. Sci. Technol. 16, 459 (2012) [CrossRef] [Google Scholar]
  13. S.R. Das, Fluidized bed-hot abrasive jet machining (FB-HAJM) of alumina ceramic, LAP Lambert Academic Publishing, Riga, 2018 [Google Scholar]
  14. A. Nassef, A. Elkaseer, E.S. Abdelnasser, M. Negm, J.A. Qudeiri, Abrasive jet drilling of glass sheets: Effect and optimisation of process parameters on kerf taper, Adv. Mech. Eng. 10(1), (2018), DOI: 10.1177/1687814017748435 [CrossRef] [Google Scholar]
  15. D.C. Montgomery, Design and analysis of experiments, John Wiley & Sons Inc., New York, 2004 [Google Scholar]
  16. P. Palanisamy, I. Rajendran, S. Shanmugasundaram, Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations, Int. J. Adv. Manuf. Technol. 32, 644 (2007) [CrossRef] [Google Scholar]
  17. S.R. Dixit, S.R. Das, D. Dhupal, Parametric optimization of Nd:YAG laser microgrooving on aluminum oxide using integrated RSM-ANN-GA approach, J. Ind. Eng. Int. 15, 333 (2019) [CrossRef] [Google Scholar]
  18. J.H. Shaik, J. Srinivas, Optimal selection of operating parameters in end milling of Al-6061 work materials using multi-objective approach, Mech. Adv. Mater. Mod. Process. 3, 1 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.