Issue
Matériaux & Techniques
Volume 107, Number 5, 2019
Materials and Society: The Circular Economy (SAM13)
Article Number 509
Number of page(s) 9
DOI https://doi.org/10.1051/mattech/2020004
Published online 25 February 2020
  1. Stålindustrin gör mer än stål Handbok för restprodukter 2012, Jernkontoret, Jernkontorets teknikområde 55, Restprodukter, 2012, ISBN 978-91-977783-2-9 [Google Scholar]
  2. B. Das, S. Prakash, P.S.R. Reddy, V.N. Misra, An overview of utilization of slag and sludge from steel industries, Resources Conserv. Recycl. 50, 40–57 (2007) [CrossRef] [Google Scholar]
  3. T.A. Branca, C. Pistocchi, V. Colla, G. Ragaglini, A. Amato, C. Tozzini, D. Mudersbach, A. Morillon, M. Rex, L. Romaniello, Investigation of (BOF) converter slag use for agriculture in Europe, Metall. Res. Technol. 111, 155–167 (2014) [CrossRef] [EDP Sciences] [Google Scholar]
  4. Environmental report 2015, SSAB EMEA AB and SSAB Merox AB Oxelösund [Online]. Available: https://www.ssab.us/download-center?dcFilter=environmentalre&dcSearch= [Accessed: 4-April-2019] [Google Scholar]
  5. Sustainability Report 2017, Höganäs [Online]. Available: https://www.hoganas.com/globalassets/download-media/corporate/sustainability/hoganas-hallbarhetsrapport-2017.pdf [Accessed: 4-April-2019] [Google Scholar]
  6. Metals for a sustainable society, Boliden Annual and Sustainability Report 2018 [Online] Available: https://vp217.alertir.com/afw/files/press/boliden/201903076646-1.pdf [Accessed: 4-April-2019] [Google Scholar]
  7. UN sustainable development goals, [Online]. Available: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ [Accessed: 4-April- 2019] [Google Scholar]
  8. EU circular economy package, [Online]. Available: http://ec.europa.eu/environment/circular-economy/index_en.htm [Accessed: 4-April-2019] [Google Scholar]
  9. M. Geissdoerfer, P. Savageta, N.M.P. Bocken, E.J. Hultink, The circular economy − a new sustainability paradigm? J. Cleaner Prod. 143, 757–768 (2017) [CrossRef] [Google Scholar]
  10. D.R. Lombardi, P. Laybourn, Redefining industrial symbiosis, J. Industrial Ecol. 16, 28–37 (2012) [CrossRef] [Google Scholar]
  11. G. Krese, V. Dodig, B. Lagler, B. Strmčnik, G. Podbregar, Global trends in implementing the industrial symbiosis concept in the steel sector, International Multidisciplinary Scientific Geo Conference Surveying Geology and Mining Ecology Management, SGEM 18, 485–496 (2018) [Google Scholar]
  12. G. Caiati, A. Declich, The social nature of materials. A brief overview and two case studies concerning the Energy transition context, Materiaux & Techniques 104, 603 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  13. M.A. Sellitto, F.K. Murakami, Industrial symbiosis: a case study involving a steelmaking, a cement manufacturing, and a zinc smelting plant, Chem. Eng. Trans. 70, 211–216 (2018) [Google Scholar]
  14. Y. Moriguchi, Material flow indicators to measure progress toward a sound material-cycle society, J. Mater. Cycles Waste Manage. 9, 112–120 (2007) [CrossRef] [Google Scholar]
  15. M. Lewandowski, Designing the business models for circular economy — Towards the conceptual framework, Sustainability 8, 43 (2016) [CrossRef] [Google Scholar]
  16. B. Zhang, Z. Du, Z. Wang, Carbon reduction from sustainable consumption of waste resources: an optimal model for collaboration in an industrial symbiotic network, J. Cleaner Prod. 196, 821–828 (2018) [CrossRef] [Google Scholar]
  17. G.F. Porzio, V. Colla, B. Fornai, M. Vannucci, M. Larsson, H. Stripple, Process integration analysis and some economic-environmental implications for an innovative environmentally friendly recovery and pre-treatment of steel scrap, Appl. Energy 161, 656–672 (2016) [CrossRef] [Google Scholar]
  18. L. Dong, H. Zhang, T. Fujita, S. Ohnishi, H. Li, M. Fujii, H. Dong, Environmental and economic gains of industrial symbiosis for Chinese iron/steel industry: Kawasaki’s experience and practice in Liuzhou and Jinan, J. Cleaner Prod. 59, 226–238 (2013) [CrossRef] [Google Scholar]
  19. P. Sikström, L. Sundqvist Ökvist, Recycling of flue dust into the blast furnace, Proc. TMS Conference in Luleå/Sweden, Recycling and Waste Treatment in Mineral and Metal Processing, 2002 [Google Scholar]
  20. L. Sundqvist Ökvist, K.-O. Jonsson, H.-O. Lampinen, L.-E. Eriksson, Recycling of in-plant fines as cold-bonded agglomerates, Proc. Brussels, Belgium, June 1-2, (1999) [Online]. Available: https://www.lkab.com/en/SysSiteAssets/documents/kund/1999-recycling-of-in-plant-fines-as-cold-bonded–agglomerates.pdf [Accessed: 4-April-2019] [Google Scholar]
  21. S. Abdul Azees, P. Saumit, J. Rajeev, Briquetting: a new approach to recycle the waste iron-bearing materials generated in steel plants, J. Metall. Mater. Sci. 47, 199–206 (2005) [Google Scholar]
  22. P.L. Hooey, A. Bodén, C. Wang, C-E. Grip, B. Jansson, Design and application of a spreadsheet-based model of the blast furnace factory, ISIJ Int., 924–930 (2010) [CrossRef] [Google Scholar]
  23. P. Lingebrant, Application of process integration for electric arc steelmaking, Licentiate thesis, LTU, 2014, ISBN 978-91-7583-178-7 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.