Issue
Matériaux & Techniques
Volume 107, Number 5, 2019
Materials and Society: The Circular Economy (SAM13)
Article Number 503
Number of page(s) 18
DOI https://doi.org/10.1051/mattech/2019029
Published online 09 January 2020
  1. J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: Present and future, Chem. Soc. Rev. 46(12), 3529 (2017) [CrossRef] [Google Scholar]
  2. J.-M. Tarascon, Key challenges in future Li-battery research, Philos. Trans. A Math. Phys. Eng. Sci. 368(1923), 3227 (2010) [CrossRef] [Google Scholar]
  3. J.F. Peters, A. Peña Cruz, M. Weil, Exploring the economic potential of sodium-ion batteries, Batteries 5(1), 10 (2019) [CrossRef] [Google Scholar]
  4. J. Peters, D. Buchholz, S. Passerini, M. Weil, Life cycle assessment of sodium-ion batteries, Energy Environ. Sci. 9, 1744 (2016) [CrossRef] [Google Scholar]
  5. Y. Kim, J.-K. Kim, C. Vaalma, G.H. Bae, G.-T. Kim, S. Passerini, Y. Kim, Optimized hard carbon derived from starch for rechargeable seawater batteries, Carbon 129, 564 (2018) [CrossRef] [Google Scholar]
  6. J. Barker, R. Heap, N. Roche, C. Tan, R. Sayers, Y. Liu, Low cost Na-ion battery technology, Faradion Limited, San Francisco, US, 2013 [Google Scholar]
  7. Q. Wang, X. Zhu, Y. Liu, Y. Fang, X. Zhou, J. Bao, Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries, Carbon 127, 658 (2018) [CrossRef] [Google Scholar]
  8. E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton, D. Mitlin, High-density sodium and lithium ion battery anodes from banana peels, ACS Nano 8(7), 7115 (2014) [CrossRef] [Google Scholar]
  9. K. Hong, et al., Biomass derived hard carbon used as a high performance anode material for sodium ion batteries, J. Mater. Chem. A 2(32), 12733 (2014) [CrossRef] [Google Scholar]
  10. H. Wang, Z. Shi, J. Jin, C. Chong, C. Wang, Properties and sodium insertion behavior of phenolic resin-based hard carbon microspheres obtained by a hydrothermal method, J. Electroanal. Chem. 755, 87 (2015) [CrossRef] [Google Scholar]
  11. K. Yanagida, A. Yanai, Y. Kida, T. Nohma, I. Yonezu, Carbon hybrids graphite-hard carbon and graphite-coke as negative electrode materials for lithium secondary batteries charge/discharge characteristic, J. Electrochem. Soc. 149(7), A804 (2002) [CrossRef] [Google Scholar]
  12. E. Irisarri, A. Ponrouch, M.R. Palacin, Review – Hard carbon negative electrode materials for sodium-ion batteries, J. Electrochem. Soc. 162(14), A2476 (2015) [CrossRef] [Google Scholar]
  13. L. Wu, D. Buchholz, C. Vaalma, G.A. Giffin, S. Passerini, Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries, ChemElectroChem 3(2), 292 (2016) [CrossRef] [Google Scholar]
  14. B. Messenger, German researchers use apple waste in high-power sodium-ion batteries, in WMW – Waste Management World, 2016 [Google Scholar]
  15. Biocom, Batteries made from apple biowaste, in bioökonomie.de, Berlin, Germany, 2016 [Google Scholar]
  16. V.K. Sharma, F. Fortuna, M. Mincarini, M. Berillo, G. Cornacchia, Disposal of waste tyres for energy recovery and safe environment, Appl. Energy 65(1), 381 (2000) [CrossRef] [Google Scholar]
  17. D. Czajczyńska, R. Krzyżyńska, H. Jouhara, N. Spencer, Use of pyrolytic gas from waste tire as a fuel: A review, Energy 134, 1121 (2017) [CrossRef] [Google Scholar]
  18. G.-G. Choi, S.-H. Jung, S.-J. Oh, J.-S. Kim, Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char, Fuel Process. Technol. 123, 57 (2014) [Google Scholar]
  19. USTMA, 2015 U.S. Scrap Tire Management Summary, U.S. Tire Manufacturers Association, Washington DC, United States, 2017 [Google Scholar]
  20. G. Hasegawa, K. Kanamori, N. Kannari, J. Ozaki, K. Nakanishi, T. Abe, Hard carbon anodes for Na-ion batteries: Toward a practical use, ChemElectroChem 2(12), 1917 (2015) [CrossRef] [Google Scholar]
  21. B. Simon, K. Bachtin, A. Kiliç, B. Amor, M. Weil, Proposal of a framework for scale-up life cycle inventory: A case of nanofibers for lithium iron phosphate cathode applications, Integr. Environ. Assess. Manag. 12(3), 465 (2016) [CrossRef] [Google Scholar]
  22. H.L. Brown, Ed., Energy analysis of 108 industrial processes, The Fairmont Press, Inc., Lilburn, US, 1996 [Google Scholar]
  23. M.S. Peters, K.D. Timmerhaus, R.E. West, Plant design and economics for chemical engineers, Mc Graw-Hill, New York, 2003 [Google Scholar]
  24. D.A. Notter, M. Gauch, R. Widmer, P. Wäger, A. Stamp, R. Zah, H.-J. Althaus, Contribution of Li-ion batteries to the environmental impact of electric vehicles, Environ. Sci. Technol. 44(17), 6550 (2010) [CrossRef] [PubMed] [Google Scholar]
  25. J.F. Peters, F. Petrakopoulou, J. Dufour, Exergetic analysis of a fast pyrolysis process for bio-oil production, Fuel Process. Technol. 119, 245 (2014) [Google Scholar]
  26. J.F. Peters, S.W. Banks, A.V. Bridgwater, J. Dufour, A kinetic reaction model for biomass pyrolysis processes in Aspen Plus, Appl. Energy 188, 595 (2017) [CrossRef] [Google Scholar]
  27. R.H. Perry, D.W. Green, Eds., Perry’s chemical engineers’ handbook, McGraw-Hill, 1999 [Google Scholar]
  28. EAECO, TTSR5-1 Truck Tire Sidewall Remover, Company Website – Tyre recycling equipment manufacturer, Engineering and Equipment Co, 2019, https://www.eaeco.com/products/ttsr (10 October 2019) [Google Scholar]
  29. J. Dodds, W. Domenico, D. Evans, L. Fish, P. Lassah, W. Toth, Scrap tyres: A resource and technology evaluation of tyre pyrolysis and other selected alternative technologies, Report EGG-2241, US Department of Energy, Idaho, US, 1983 [Google Scholar]
  30. K. Reschner, Scrap tire recycling – A summary of prevalent disposal and recycling methods, EnTire Engineering, Berlin, Germany, 2008 [Google Scholar]
  31. N.S. Enikolopov, et al., Method of making powder from rubber and vulcanization products, US Patent US-4607796, 1986 [Google Scholar]
  32. A. Shalaby, R.A. Khan, Design of unsurfaced roads constructed with large-size shredded rubber tires: A case study, Resour. Conserv. Recycl. 44(4), 318 (2005) [CrossRef] [Google Scholar]
  33. J. Beniak, J. Ondruška, V. Čačko, Design process of energy effective shredding machines for biomass treatment, Acta Polytech. 52(5), 133 (2012) [Google Scholar]
  34. J. Beniak, P. Križan, M. Matúš, M. Kováčová, The operating load of a disintegration machine, Acta Polytech. 54(1), 1 (2014) [CrossRef] [Google Scholar]
  35. KWS Manufacturing, Engineering Guide/Screw Conveyor Example, Company Website, KWS Manufacturing, 2019, https://www.kwsmfg.com/engineering-guides/screw-conveyor/screw-conveyor-example/ (10 October 2019) [Google Scholar]
  36. Y. Li, et al., Tire-derived carbon composite anodes for sodium-ion batteries, J. Power Sources 316, 232 (2016) [CrossRef] [Google Scholar]
  37. INCO, Corrosion resistance of the austenitic chromium-nickel stainless steels in chemical environments, The International Nickel Company, Inc., New York, US, 1963 [Google Scholar]
  38. Engineering ToolBox, Engineering toolbox – Tools and Basic Information for Design, Engineering and Construction of Technical Applications, Tools and Basic Information for Design, Engineering and Construction of Technical Applications, 2019, https://www.engineeringtoolbox.com/ (10 October 2019) [Google Scholar]
  39. W. Kladnig, New development of acid regeneration in steel pickling plants, J. Iron Steel Res. Int. 15(4), 1 (2008) [CrossRef] [Google Scholar]
  40. A.M. Fernández, C. Barriocanal, R. Alvarez, Pyrolysis of a waste from the grinding of scrap tyres, J. Hazard. Mater. 203–204, 236 (2012) [CrossRef] [Google Scholar]
  41. D. Mamrosh, K.E. Mc Intush, K. Fisher, Caustic scrubber designs for H2S removal from refinery gas streams, in: Proceedings of the2014 AFPM Annual Meeting, Orlando, US, 2014 [Google Scholar]
  42. M. Ringer, V. Putsche, J. Scahill, Large-scale pyrolysis oil production: A technology assessment and economic analysis, NREL/TP-510-37779, National Renewable Energy Lab. (NREL), Golden, CO (United States), 2006 [Google Scholar]
  43. J. F. Peters, D. Iribarren, J. Dufour, Life cycle assessment of pyrolysis oil applications, Biomass Conv. Bioref. 5(1), 1 (2014) [Google Scholar]
  44. Thermopedia, A-Z Guide to Thermodynamics, Heat Transfer, Fluid Flow Science and Technologies, Online Enzyclopedia, A-Z Guide to Thermodynamics, Heat Transfer, Fluid Flow Science and Technologies, 2019, http://www.thermopedia.com/ (10 October 2019) [Google Scholar]
  45. F.A. Agblevor, S. Besler, Inorganic compounds in biomass feedstocks. 1. Effect on the quality of fast pyrolysis oils, Energy Fuels 10(2), 293 (1996) [CrossRef] [Google Scholar]
  46. Conair, Dustbeater DB8 and DB12 models – Self-contained vacuum loaders, Commercial datasheet TPCX002-0118, Conair Group, Cranberry Twp, USA, 2019 [Google Scholar]
  47. P.J. Linstrom, W.G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database No. 69, National Institute of Standards and Technology, Gaithersburg, USA, 2019 [Google Scholar]
  48. M.I. Taiwo, M.A. Namadi, B. Mokwa, Design and analysis of cyclone dust separator, Am. J. Eng. Res. 5(4), 130 (2016) [Google Scholar]
  49. Carbolite Gero, HTK KE Chamber furnace, technical specification, Technical product datasheet, Carbolite Gero Ltd, Hope Valley, UK, 2019 [Google Scholar]
  50. D.N. Craig, G.W. Vinal, Thermodynamic properties of sulfuric-acid solutions and their relation to the electromotive force and heat of reaction of the lead storage battery, National Bureau of Standards, 1940 [Google Scholar]
  51. X. Dou, C. Geng, D. Buchholz, S. Passerini, Research Update: Hard carbon with closed pores from pectin-free apple pomace waste for Na-ion batteries, APL Mater. 6(4), 047501 (2018) [CrossRef] [Google Scholar]
  52. F. Almeida‐Trasviña, S. Medina‐González, E. Ortega‐Rivas, I. Salmerón‐Ochoa, S. Pérez‐Vega, Vacuum drying optimization and simulation as a preservation method of antioxidants in apple pomace, J. Food Process Eng. 37(6), 575 (2014) [CrossRef] [Google Scholar]
  53. H. Yan, Vacuum belt dried apple pomace powder as a value-added food ingredient, Liaocheng University, 2010 [Google Scholar]
  54. J. Wojdalski, J. Grochowicz, A. Ekielski, K. Radecka, S. St, I. Florczak, B. Dro, Production and properties of apple pomace pellets and their suitability for energy generation purposes, Rocznik Ochrona Srodowiska 18, 89 (2016) [Google Scholar]
  55. G.S. Learmonth, P. Osborn, Pyrolysis of phenolic resins. IV., J. Appl. Polym. Sci. 12(8), 1815 (1968) [CrossRef] [Google Scholar]
  56. S.R. Tennison, Phenolic-resin-derived activated carbons, Appl. Catal. A Gen. 173(2) 289 (1998) [CrossRef] [Google Scholar]
  57. K.A. Trick, T.E. Saliba, Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite, Carbon 33(11), 1509 (1995) [CrossRef] [Google Scholar]
  58. G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz, B. Weidema, The ecoinvent database version 3 (part I): Overview and methodology, Int. J. Life Cycle Assess. 21(9), 1218 (2016) [CrossRef] [Google Scholar]
  59. H. Jiang, J. Wang, S. Wu, B. Wang, Z. Wang, Pyrolysis kinetics of phenol–formaldehyde resin by non-isothermal thermogravimetry, Carbon 48(2), 352 (2010) [CrossRef] [Google Scholar]
  60. ISO, ISO 14040 – Environmental management – Life cycle assessment – Principles and framework, International Organization for Standardization, Geneva, Switzerland, 2006 [Google Scholar]
  61. ISO, ISO 14044 – management – Life cycle assessment – Requirements and guidelines, International Organization for Standardization, Geneva, Switzerland, 2006 [Google Scholar]
  62. VDI, VDI guideline 4600: Cumulative energy demand (KEA) – Terms, definitions, methods of calculation, Verein Deutscher Ingenieure, Düsseldorf, Germany, 2012 [Google Scholar]
  63. EC-JRC, ILCD Handbook: Recommendations for Life Cycle Impact Assessment in the European context, European Commission – Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy, 2011 [Google Scholar]
  64. J.F. Peters, M. Weil, Providing a common base for life cycle assessments of Li-ion batteries, J. Clean. Prod. 171, 704 (2018) [CrossRef] [Google Scholar]
  65. R. Hischier, M. Classen, M. Lehmann, W. Scharnhorst, Life cycle inventories of electric and electronic equipments: Production, use and disposal, Empa/Technology and Science Lab, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland, 2007 [Google Scholar]
  66. N. Jungbluth, Ecoinvent report No. 4 – Erdöl. in Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz., V 2.0, R. Dones, Ed., Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland, 2007 [Google Scholar]
  67. E. Moreno Ruiz, T. Lévová, G. Bourgault, G. Wernet, Documentation of changes implemented in ecoinvent database 3.2, Ecoinvent Centre, Zürich, Switzerland, 2015 [Google Scholar]
  68. M. Banse, H. van Meijl, A. Tabeau, G. Woltjer, F. Hellmann, P.H. Verburg, Impact of EU biofuel policies on world agricultural production and land use, Biomass Bioenergy 35(6), 2385 (2011) [CrossRef] [Google Scholar]
  69. J.F. Peters, M.J. Baumann, B. Zimmermann, J. Braun, M. Weil, The environmental impact of Li-ion batteries and the role of key parameters – A review, Renew. Sustain. Energy Rev. 67, 491 (2017) [CrossRef] [Google Scholar]
  70. N. Zhang, Q. Liu, W. Chen, M. Wan, X. Li, L. Wang, L. Xue, W. Zhang, High capacity hard carbon derived from lotus stem as anode for sodium ion batteries, J. Power Sources 378, 331 (2018) [CrossRef] [Google Scholar]
  71. C. Yu, H. Hou, X. Liu, Y. Yao, Q. Liao, Z. Dai, D. Li, Old-loofah-derived hard carbon for long cyclicity anode in sodium ion battery, Int. J. Hydrogen Energy 43(6), 3253 (2018) [CrossRef] [Google Scholar]
  72. Y. Zheng, Y. Wang, Y. Lu, Y.-S. Hu, J. Li, A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode, Nano Energy 39, 489 (2017) [CrossRef] [Google Scholar]
  73. M. Hu, L. Yang, K. Zhou, C. Zhou, Z.-H. Huang, F. Kang, R. Lv, Enhanced sodium-ion storage of nitrogen-rich hard carbon by NaCl intercalation, Carbon 122, 680 (2017) [CrossRef] [Google Scholar]
  74. Y. Zhu, M. Chen, Q. Li, C. Yuan, C. Wang, High-yield humic acid-based hard carbons as promising anode materials for sodium-ion batteries, Carbon 123, 727 (2017) [CrossRef] [Google Scholar]
  75. F. Zhang, Y. Yao, J. Wan, D. Henderson, X. Zhang, L. Hu, High temperature carbonized grass as a high performance sodium ion battery anode, ACS Appl. Mater. Interfaces 9(1), 391 (2017) [CrossRef] [Google Scholar]
  76. J. Xiang, W. Lv, C. Mu, J. Zhao, B. Wang, Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life, J. Alloys Compd. 701, 870 (2017) [CrossRef] [Google Scholar]
  77. M. Dahbi, M. Kiso, K. Kubota, T. Horiba, T. Chafik, K. Hida, T. Matsuyama, S. Komaba, Synthesis of hard carbon from argan shells for Na-ion batteries, J. Mater. Chem. A 5(20) 9917, (2017) [CrossRef] [Google Scholar]
  78. L. Cao, W. Hui, Z. Xu, J. Huang, P. Zheng, J. Li, Q. Sun, Rape seed shuck derived-lamellar hard carbon as anodes for sodium-ion batteries, J. Alloys Compd. 695, 632 (2017) [CrossRef] [Google Scholar]
  79. S. Jayaraman, A. Jain, M. Ulaganathan, E. Edison, M. P. Srinivasan, R. Balasubramanian, V. Aravindan, S. Madhavi, Li-ion vs. Na-ion capacitors: A performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon, Chem. Eng. J. 316, 506 (2017) [CrossRef] [Google Scholar]
  80. X. Zhu, X. Jiang, X. Liu, L. Xiao, Y. Cao, A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste, Green Energy Environ. 2(3) 310 (2017) [CrossRef] [Google Scholar]
  81. Q. Jiang, Z. Zhang, S. Yin, Z. Guo, S. Wang, C. Feng, Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries, Appl. Surf. Sci. 379, 73 (2016) [CrossRef] [Google Scholar]
  82. H. Wang, D. Mitlin, J. Ding, Z. Li, K. Cui, Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes, J. Mater. Chem. A 4(14), 5149 (2016) [CrossRef] [Google Scholar]
  83. V. Selvamani, R. Ravikumar, V. Suryanarayanan, D. Velayutham, S. Gopukumar, Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell, Electrochim. Acta 190, 337 (2016) [CrossRef] [Google Scholar]
  84. Y. Li, Y.-S. Hu, M.-M. Titirici, L. Chen, X. Huang, Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries, Adv. Energy Mater. 6(18), 1600659 (2016) [CrossRef] [Google Scholar]
  85. F. Shen, et al., Ultra-Thick, Low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries, Adv. Energy Mater. 6(14), 1600377 (2016) [CrossRef] [Google Scholar]
  86. H. Li, et al., Carbonized-leaf membrane with anisotropic surfaces for sodium-ion battery, ACS Appl. Mater. Interfaces 8(3), 2204 (2016) [CrossRef] [Google Scholar]
  87. A. Ponrouch, A.R. Goñi, M.R. Palacín, High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte, Electrochem. Commun. 27, 85 (2013) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.