Issue
Matériaux & Techniques
Volume 107, Number 5, 2019
Materials and Society: The Circular Economy (SAM13)
Article Number 502
Number of page(s) 6
DOI https://doi.org/10.1051/mattech/2019025
Published online 09 January 2020
  1. International Energy Agency, Energy technologies perspective 2010, Scenarios and strategies to 2050, 2010, Available from http://www.oecd-ilibrary.org/energy/energy-technology-perspectives-2010_energy_tech-2010-en, [last accessed Jan. 2019] [Google Scholar]
  2. K. Baumert, T. Herzog, J. Pershing, Navigating the numbers: Greenhouse gas data and international climate policy, World Resources Institute report, Washington, 2005, ISBN: 1-56973-599-9, Available from www.oecd.org/dataoecd/28/43/36448807.pdf, [last accessed Jan. 2019] [Google Scholar]
  3. Worldsteel, Steel’s contribution to a low carbon future: Worldsteel position paper, 2017, Available from worldsteel.org/publications/position-papers/Steel-s-contribution-to-a-low-carbon-future.html, [last accessed: Jan. 2019] [Google Scholar]
  4. H. Kong, E. Qi, H. Li, G. Li, X. Zhang, An MILP model for optimization of by-product gases in the integrated iron and steel plant, Appl. Energy 87, 2156–2163 (2009) [CrossRef] [Google Scholar]
  5. W. Uribe-Soto, J.-F. Portha, J.-M. Commenge, L. Falk, A review of thermochemical processes and technologies to use steelworks off-gases, Renew. Sustain. Energy Rev. 74, 809–823 (2017) [CrossRef] [Google Scholar]
  6. N. Maruoka, T. Akiyama, Exergy recovery from steelmaking off-gas by latent heat storage for methanol production, Energy 31(10–11), 1632–1642 (2006) [CrossRef] [Google Scholar]
  7. Y. Wang, C. Yin, M. Tan, K. Shimizu, Z. Lei, Z. Zhang, I. Sumi, Y. Yao, Y. Mogi, Biomethanation of blast furnace gas using anaerobic granular sludge via addition of hydrogen, RSC Adv. 8(46), 26399–26406 (2018) [CrossRef] [Google Scholar]
  8. S.G. Garcia, V.R. Montequin, R.L. Fernández, F. Ortega-Fernández, Evaluation of the synergies in cogeneration with steel waste gases based on Life Cycle Assessment: A combined coke oven and steelmaking gas case study, J. Clean. Prod. 217, 576–583 (2019) [CrossRef] [Google Scholar]
  9. G.F. Porzio, B. Fornai, A. Amato, N. Matarese, M. Vannucci, L. Chiappelli, V. Colla, Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry, Appl. Energy 112, 818–833 (2013) [CrossRef] [Google Scholar]
  10. G.F. Porzio, V. Colla, N. Matarese, G. Nastasi, T.A. Branca, A. Amato, B. Fornai, V. Marco, M. Bergamasco, Process integration in energy and carbon intensive industries: An example of exploitation of optimization techniques and decision support, Appl. Therm. Eng. 70(2), 1148–1155 (2014) [CrossRef] [Google Scholar]
  11. G.F. Porzio, G. Nastasi, V. Colla, M. Vannucci, T.A. Branca, Comparison of multi-objective optimization techniques applied to off-gas management within an integrated steelwork, Appl. Energy 136, 1085–1097 (2014) [CrossRef] [Google Scholar]
  12. A. Maddaloni, G. Porzio, G. Nastasi, V. Colla, T.A. Branca, Multi-objective optimization applied to retrofit analysis: A case study for the iron and steel industry, Appl. Therm. Eng. 91, 638–646 (2015) [CrossRef] [Google Scholar]
  13. I. Matino, S. Dettori, V. Colla, V. Weber, S. Salame, Application of Echo State Neural Networks to forecast blast furnace gas production: Pave the way to off-gas optimized management, Energy Procedia 158, 4037–4042 (2019) [CrossRef] [Google Scholar]
  14. I. Matino, S. Dettori, V. Colla, V. Weber, S. Salame, Two innovative modelling approaches in order to forecast consumption of blast furnace gas by hot blast stoves, Energy Procedia 158, 4043–4048 (2019) [CrossRef] [Google Scholar]
  15. S. Dettori, I. Matino, V. Colla, V. Weber, S. Salame, Neural Network-based modeling methodologies for energy transformation equipment in integrated steelworks processes, Energy Procedia 158, 4061–4066 (2019) [CrossRef] [Google Scholar]
  16. I. Matino, S. Dettori, V. Colla, N. Zapata, S. Bastida, J. Bartel, Forecasting of basic oxygen furnace gas production through Echo State Neural Networks, in: 8th European Oxygen Steelmaking Conference – EOSC 2018, Taranto, Italy, 2018 [Google Scholar]
  17. V. Colla, I. Matino, S. Dettori, A. Petrucciani, A. Zaccara, V. Weber, S. Salame, N. Zapata, S. Bastida, A. Wolff, R. Speets, L. Romaniello, Assessing the efficiency of the off-gas network management in integrated steelwork, Matériaux et Techniques 107(1), 104 (2019) [CrossRef] [Google Scholar]
  18. V. Colla, I. Matino, S. Dettori, A. Zaccara, A. Petrucciani, V. Weber, S. Salame, N. Zapata, S. Bastida, A. Wolff, R. Speets, L. Romaniello, A way to quantify the efficiency of the gas network management in integrated steelworks, in: 4th European Conference on Clean Technologies in the Steel Industry – CLEANTECH 4, Bergamo, Italy, 2018 [Google Scholar]
  19. J. Bang-Jensen, G. Gutin, Digraphs: Theory, algorithms and aplications, 2nd Edition, Springer-Verlag, London, 2009 [Google Scholar]
  20. R. Ahuja, T. Magnanti, J. Orlin, Network flows, Prentice Hall, Upper Saddle River, New Jersey, 1993 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.